Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval1sta Structured version   Visualization version   GIF version

Theorem dicelval1sta 41186
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicelval1sta.l = (le‘𝐾)
dicelval1sta.a 𝐴 = (Atoms‘𝐾)
dicelval1sta.h 𝐻 = (LHyp‘𝐾)
dicelval1sta.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicelval1sta.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicelval1sta.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicelval1sta (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
Distinct variable groups:   𝑔,𝐾   𝑄,𝑔   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)   𝑌(𝑔)

Proof of Theorem dicelval1sta
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicelval1sta.l . . . . . 6 = (le‘𝐾)
2 dicelval1sta.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3 dicelval1sta.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 dicelval1sta.p . . . . . 6 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicelval1sta.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 eqid 2729 . . . . . 6 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
7 dicelval1sta.i . . . . . 6 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 41175 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
98eleq2d 2814 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
109biimp3a 1471 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
11 eqeq1 2733 . . . . 5 (𝑓 = (1st𝑌) → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ (1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
1211anbi1d 631 . . . 4 (𝑓 = (1st𝑌) → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
13 fveq1 6825 . . . . . 6 (𝑠 = (2nd𝑌) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1413eqeq2d 2740 . . . . 5 (𝑠 = (2nd𝑌) → ((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
15 eleq1 2816 . . . . 5 (𝑠 = (2nd𝑌) → (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ↔ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1614, 15anbi12d 632 . . . 4 (𝑠 = (2nd𝑌) → (((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))))
1712, 16elopabi 8004 . . 3 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1810, 17syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1918simpld 494 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  {copab 5157  cfv 6486  crio 7309  1st c1st 7929  2nd c2nd 7930  lecple 17187  occoc 17188  Atomscatm 39261  LHypclh 39983  LTrncltrn 40100  TEndoctendo 40751  DIsoCcdic 41171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-1st 7931  df-2nd 7932  df-dic 41172
This theorem is referenced by:  dicvaddcl  41189  dicvscacl  41190
  Copyright terms: Public domain W3C validator