![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval1sta | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) |
Ref | Expression |
---|---|
dicelval1sta.l | ⊢ ≤ = (le‘𝐾) |
dicelval1sta.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicelval1sta.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicelval1sta.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dicelval1sta.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dicelval1sta.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dicelval1sta | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicelval1sta.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
2 | dicelval1sta.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicelval1sta.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicelval1sta.p | . . . . . 6 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | dicelval1sta.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | eqid 2740 | . . . . . 6 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
7 | dicelval1sta.i | . . . . . 6 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dicval 41133 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
9 | 8 | eleq2d 2830 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})) |
10 | 9 | biimp3a 1469 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
11 | eqeq1 2744 | . . . . 5 ⊢ (𝑓 = (1st ‘𝑌) → (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ (1st ‘𝑌) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) | |
12 | 11 | anbi1d 630 | . . . 4 ⊢ (𝑓 = (1st ‘𝑌) → ((𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st ‘𝑌) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))) |
13 | fveq1 6919 | . . . . . 6 ⊢ (𝑠 = (2nd ‘𝑌) → (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) | |
14 | 13 | eqeq2d 2751 | . . . . 5 ⊢ (𝑠 = (2nd ‘𝑌) → ((1st ‘𝑌) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) |
15 | eleq1 2832 | . . . . 5 ⊢ (𝑠 = (2nd ‘𝑌) → (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ↔ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊))) | |
16 | 14, 15 | anbi12d 631 | . . . 4 ⊢ (𝑠 = (2nd ‘𝑌) → (((1st ‘𝑌) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))) |
17 | 12, 16 | elopabi 8103 | . . 3 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} → ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊))) |
18 | 10, 17 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊))) |
19 | 18 | simpld 494 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 {copab 5228 ‘cfv 6573 ℩crio 7403 1st c1st 8028 2nd c2nd 8029 lecple 17318 occoc 17319 Atomscatm 39219 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 DIsoCcdic 41129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-1st 8030 df-2nd 8031 df-dic 41130 |
This theorem is referenced by: dicvaddcl 41147 dicvscacl 41148 |
Copyright terms: Public domain | W3C validator |