![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval1sta | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) |
Ref | Expression |
---|---|
dicelval1sta.l | ⊢ ≤ = (le‘𝐾) |
dicelval1sta.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicelval1sta.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicelval1sta.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dicelval1sta.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dicelval1sta.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dicelval1sta | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicelval1sta.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
2 | dicelval1sta.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicelval1sta.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicelval1sta.p | . . . . . 6 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | dicelval1sta.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | eqid 2728 | . . . . . 6 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
7 | dicelval1sta.i | . . . . . 6 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dicval 40681 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
9 | 8 | eleq2d 2815 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})) |
10 | 9 | biimp3a 1465 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
11 | eqeq1 2732 | . . . . 5 ⊢ (𝑓 = (1st ‘𝑌) → (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ (1st ‘𝑌) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) | |
12 | 11 | anbi1d 629 | . . . 4 ⊢ (𝑓 = (1st ‘𝑌) → ((𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st ‘𝑌) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))) |
13 | fveq1 6901 | . . . . . 6 ⊢ (𝑠 = (2nd ‘𝑌) → (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) | |
14 | 13 | eqeq2d 2739 | . . . . 5 ⊢ (𝑠 = (2nd ‘𝑌) → ((1st ‘𝑌) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) |
15 | eleq1 2817 | . . . . 5 ⊢ (𝑠 = (2nd ‘𝑌) → (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ↔ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊))) | |
16 | 14, 15 | anbi12d 630 | . . . 4 ⊢ (𝑠 = (2nd ‘𝑌) → (((1st ‘𝑌) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))) |
17 | 12, 16 | elopabi 8072 | . . 3 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} → ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊))) |
18 | 10, 17 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊))) |
19 | 18 | simpld 493 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 {copab 5214 ‘cfv 6553 ℩crio 7381 1st c1st 7997 2nd c2nd 7998 lecple 17247 occoc 17248 Atomscatm 38767 LHypclh 39489 LTrncltrn 39606 TEndoctendo 40257 DIsoCcdic 40677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-1st 7999 df-2nd 8000 df-dic 40678 |
This theorem is referenced by: dicvaddcl 40695 dicvscacl 40696 |
Copyright terms: Public domain | W3C validator |