Step | Hyp | Ref
| Expression |
1 | | dicelval1sta.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
2 | | dicelval1sta.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
3 | | dicelval1sta.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
4 | | dicelval1sta.p |
. . . . . 6
β’ π = ((ocβπΎ)βπ) |
5 | | dicelval1sta.t |
. . . . . 6
β’ π = ((LTrnβπΎ)βπ) |
6 | | eqid 2732 |
. . . . . 6
β’
((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) |
7 | | dicelval1sta.i |
. . . . . 6
β’ πΌ = ((DIsoCβπΎ)βπ) |
8 | 1, 2, 3, 4, 5, 6, 7 | dicval 40035 |
. . . . 5
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β ((TEndoβπΎ)βπ))}) |
9 | 8 | eleq2d 2819 |
. . . 4
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β π β {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β ((TEndoβπΎ)βπ))})) |
10 | 9 | biimp3a 1469 |
. . 3
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β (πΌβπ)) β π β {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β ((TEndoβπΎ)βπ))}) |
11 | | eqeq1 2736 |
. . . . 5
β’ (π = (1st βπ) β (π = (π β(β©π β π (πβπ) = π)) β (1st βπ) = (π β(β©π β π (πβπ) = π)))) |
12 | 11 | anbi1d 630 |
. . . 4
β’ (π = (1st βπ) β ((π = (π β(β©π β π (πβπ) = π)) β§ π β ((TEndoβπΎ)βπ)) β ((1st βπ) = (π β(β©π β π (πβπ) = π)) β§ π β ((TEndoβπΎ)βπ)))) |
13 | | fveq1 6887 |
. . . . . 6
β’ (π = (2nd βπ) β (π β(β©π β π (πβπ) = π)) = ((2nd βπ)β(β©π β π (πβπ) = π))) |
14 | 13 | eqeq2d 2743 |
. . . . 5
β’ (π = (2nd βπ) β ((1st
βπ) = (π β(β©π β π (πβπ) = π)) β (1st βπ) = ((2nd
βπ)β(β©π β π (πβπ) = π)))) |
15 | | eleq1 2821 |
. . . . 5
β’ (π = (2nd βπ) β (π β ((TEndoβπΎ)βπ) β (2nd βπ) β ((TEndoβπΎ)βπ))) |
16 | 14, 15 | anbi12d 631 |
. . . 4
β’ (π = (2nd βπ) β (((1st
βπ) = (π β(β©π β π (πβπ) = π)) β§ π β ((TEndoβπΎ)βπ)) β ((1st βπ) = ((2nd
βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β ((TEndoβπΎ)βπ)))) |
17 | 12, 16 | elopabi 8044 |
. . 3
β’ (π β {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β ((TEndoβπΎ)βπ))} β ((1st βπ) = ((2nd
βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β ((TEndoβπΎ)βπ))) |
18 | 10, 17 | syl 17 |
. 2
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β (πΌβπ)) β ((1st βπ) = ((2nd
βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β ((TEndoβπΎ)βπ))) |
19 | 18 | simpld 495 |
1
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β (πΌβπ)) β (1st βπ) = ((2nd
βπ)β(β©π β π (πβπ) = π))) |