Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval1sta Structured version   Visualization version   GIF version

Theorem dicelval1sta 41188
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicelval1sta.l = (le‘𝐾)
dicelval1sta.a 𝐴 = (Atoms‘𝐾)
dicelval1sta.h 𝐻 = (LHyp‘𝐾)
dicelval1sta.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicelval1sta.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicelval1sta.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicelval1sta (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
Distinct variable groups:   𝑔,𝐾   𝑄,𝑔   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)   𝑌(𝑔)

Proof of Theorem dicelval1sta
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicelval1sta.l . . . . . 6 = (le‘𝐾)
2 dicelval1sta.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3 dicelval1sta.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 dicelval1sta.p . . . . . 6 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicelval1sta.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 eqid 2730 . . . . . 6 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
7 dicelval1sta.i . . . . . 6 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 41177 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
98eleq2d 2815 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
109biimp3a 1471 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
11 eqeq1 2734 . . . . 5 (𝑓 = (1st𝑌) → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ (1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
1211anbi1d 631 . . . 4 (𝑓 = (1st𝑌) → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
13 fveq1 6860 . . . . . 6 (𝑠 = (2nd𝑌) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1413eqeq2d 2741 . . . . 5 (𝑠 = (2nd𝑌) → ((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
15 eleq1 2817 . . . . 5 (𝑠 = (2nd𝑌) → (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ↔ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1614, 15anbi12d 632 . . . 4 (𝑠 = (2nd𝑌) → (((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))))
1712, 16elopabi 8044 . . 3 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1810, 17syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1918simpld 494 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  {copab 5172  cfv 6514  crio 7346  1st c1st 7969  2nd c2nd 7970  lecple 17234  occoc 17235  Atomscatm 39263  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753  DIsoCcdic 41173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-1st 7971  df-2nd 7972  df-dic 41174
This theorem is referenced by:  dicvaddcl  41191  dicvscacl  41192
  Copyright terms: Public domain W3C validator