Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval1sta Structured version   Visualization version   GIF version

Theorem dicelval1sta 38338
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicelval1sta.l = (le‘𝐾)
dicelval1sta.a 𝐴 = (Atoms‘𝐾)
dicelval1sta.h 𝐻 = (LHyp‘𝐾)
dicelval1sta.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicelval1sta.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicelval1sta.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicelval1sta (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
Distinct variable groups:   𝑔,𝐾   𝑄,𝑔   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)   𝑌(𝑔)

Proof of Theorem dicelval1sta
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicelval1sta.l . . . . . 6 = (le‘𝐾)
2 dicelval1sta.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3 dicelval1sta.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 dicelval1sta.p . . . . . 6 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicelval1sta.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 eqid 2821 . . . . . 6 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
7 dicelval1sta.i . . . . . 6 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 38327 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
98eleq2d 2898 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
109biimp3a 1465 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
11 eqeq1 2825 . . . . 5 (𝑓 = (1st𝑌) → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ (1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
1211anbi1d 631 . . . 4 (𝑓 = (1st𝑌) → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
13 fveq1 6669 . . . . . 6 (𝑠 = (2nd𝑌) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1413eqeq2d 2832 . . . . 5 (𝑠 = (2nd𝑌) → ((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
15 eleq1 2900 . . . . 5 (𝑠 = (2nd𝑌) → (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ↔ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1614, 15anbi12d 632 . . . 4 (𝑠 = (2nd𝑌) → (((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))))
1712, 16elopabi 7760 . . 3 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1810, 17syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1918simpld 497 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  {copab 5128  cfv 6355  crio 7113  1st c1st 7687  2nd c2nd 7688  lecple 16572  occoc 16573  Atomscatm 36414  LHypclh 37135  LTrncltrn 37252  TEndoctendo 37903  DIsoCcdic 38323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-1st 7689  df-2nd 7690  df-dic 38324
This theorem is referenced by:  dicvaddcl  38341  dicvscacl  38342
  Copyright terms: Public domain W3C validator