Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval1sta Structured version   Visualization version   GIF version

Theorem dicelval1sta 38895
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicelval1sta.l = (le‘𝐾)
dicelval1sta.a 𝐴 = (Atoms‘𝐾)
dicelval1sta.h 𝐻 = (LHyp‘𝐾)
dicelval1sta.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicelval1sta.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicelval1sta.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicelval1sta (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
Distinct variable groups:   𝑔,𝐾   𝑄,𝑔   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)   𝑌(𝑔)

Proof of Theorem dicelval1sta
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicelval1sta.l . . . . . 6 = (le‘𝐾)
2 dicelval1sta.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3 dicelval1sta.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 dicelval1sta.p . . . . . 6 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicelval1sta.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 eqid 2734 . . . . . 6 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
7 dicelval1sta.i . . . . . 6 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 38884 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
98eleq2d 2819 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
109biimp3a 1471 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
11 eqeq1 2738 . . . . 5 (𝑓 = (1st𝑌) → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ (1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
1211anbi1d 633 . . . 4 (𝑓 = (1st𝑌) → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
13 fveq1 6705 . . . . . 6 (𝑠 = (2nd𝑌) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1413eqeq2d 2745 . . . . 5 (𝑠 = (2nd𝑌) → ((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
15 eleq1 2821 . . . . 5 (𝑠 = (2nd𝑌) → (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ↔ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1614, 15anbi12d 634 . . . 4 (𝑠 = (2nd𝑌) → (((1st𝑌) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))))
1712, 16elopabi 7821 . . 3 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1810, 17syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)))
1918simpld 498 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5043  {copab 5105  cfv 6369  crio 7158  1st c1st 7748  2nd c2nd 7749  lecple 16774  occoc 16775  Atomscatm 36971  LHypclh 37692  LTrncltrn 37809  TEndoctendo 38460  DIsoCcdic 38880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-1st 7750  df-2nd 7751  df-dic 38881
This theorem is referenced by:  dicvaddcl  38898  dicvscacl  38899
  Copyright terms: Public domain W3C validator