Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloppf Structured version   Visualization version   GIF version

Theorem eloppf 49138
Description: The pre-image of a non-empty opposite functor is non-empty; and the second component of the pre-image is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
eloppf.g 𝐺 = ( oppFunc ‘𝐹)
eloppf.x (𝜑𝑋𝐺)
Assertion
Ref Expression
eloppf (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))

Proof of Theorem eloppf
StepHypRef Expression
1 eloppf.x . . . . 5 (𝜑𝑋𝐺)
2 eloppf.g . . . . 5 𝐺 = ( oppFunc ‘𝐹)
31, 2eleqtrdi 2838 . . . 4 (𝜑𝑋 ∈ ( oppFunc ‘𝐹))
4 elfvdm 6861 . . . . 5 (𝑋 ∈ ( oppFunc ‘𝐹) → 𝐹 ∈ dom oppFunc )
5 oppffn 49129 . . . . . 6 oppFunc Fn (V × V)
65fndmi 6590 . . . . 5 dom oppFunc = (V × V)
74, 6eleqtrdi 2838 . . . 4 (𝑋 ∈ ( oppFunc ‘𝐹) → 𝐹 ∈ (V × V))
83, 7syl 17 . . 3 (𝜑𝐹 ∈ (V × V))
9 0nelxp 5657 . . 3 ¬ ∅ ∈ (V × V)
10 nelne2 3023 . . 3 ((𝐹 ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → 𝐹 ≠ ∅)
118, 9, 10sylancl 586 . 2 (𝜑𝐹 ≠ ∅)
12 1st2nd2 7970 . . . . . . . 8 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
133, 7, 123syl 18 . . . . . . 7 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1413fveq2d 6830 . . . . . 6 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
15 df-ov 7356 . . . . . . 7 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
16 fvex 6839 . . . . . . . 8 (1st𝐹) ∈ V
17 fvex 6839 . . . . . . . 8 (2nd𝐹) ∈ V
18 oppfvalg 49131 . . . . . . . 8 (((1st𝐹) ∈ V ∧ (2nd𝐹) ∈ V) → ((1st𝐹) oppFunc (2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
1916, 17, 18mp2an 692 . . . . . . 7 ((1st𝐹) oppFunc (2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2015, 19eqtr3i 2754 . . . . . 6 ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2114, 20eqtrdi 2780 . . . . 5 (𝜑 → ( oppFunc ‘𝐹) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
223, 21eleqtrd 2830 . . . 4 (𝜑𝑋 ∈ if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
2322ne0d 4295 . . 3 (𝜑 → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅)
24 iffalse 4487 . . . 4 (¬ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) = ∅)
2524necon1ai 2952 . . 3 (if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅ → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2623, 25syl 17 . 2 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2711, 26jca 511 1 (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  c0 4286  ifcif 4478  cop 4585   × cxp 5621  dom cdm 5623  Rel wrel 5628  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  tpos ctpos 8165   oppFunc coppf 49127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-tpos 8166  df-oppf 49128
This theorem is referenced by:  oppc1stflem  49292
  Copyright terms: Public domain W3C validator