Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloppf Structured version   Visualization version   GIF version

Theorem eloppf 49294
Description: The pre-image of a non-empty opposite functor is non-empty; and the second component of the pre-image is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
eloppf.g 𝐺 = ( oppFunc ‘𝐹)
eloppf.x (𝜑𝑋𝐺)
Assertion
Ref Expression
eloppf (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))

Proof of Theorem eloppf
StepHypRef Expression
1 eloppf.x . . . . 5 (𝜑𝑋𝐺)
2 eloppf.g . . . . 5 𝐺 = ( oppFunc ‘𝐹)
31, 2eleqtrdi 2843 . . . 4 (𝜑𝑋 ∈ ( oppFunc ‘𝐹))
4 elfvdm 6865 . . . . 5 (𝑋 ∈ ( oppFunc ‘𝐹) → 𝐹 ∈ dom oppFunc )
5 oppffn 49285 . . . . . 6 oppFunc Fn (V × V)
65fndmi 6593 . . . . 5 dom oppFunc = (V × V)
74, 6eleqtrdi 2843 . . . 4 (𝑋 ∈ ( oppFunc ‘𝐹) → 𝐹 ∈ (V × V))
83, 7syl 17 . . 3 (𝜑𝐹 ∈ (V × V))
9 0nelxp 5655 . . 3 ¬ ∅ ∈ (V × V)
10 nelne2 3027 . . 3 ((𝐹 ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → 𝐹 ≠ ∅)
118, 9, 10sylancl 586 . 2 (𝜑𝐹 ≠ ∅)
12 1st2nd2 7969 . . . . . . . 8 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
133, 7, 123syl 18 . . . . . . 7 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1413fveq2d 6835 . . . . . 6 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
15 df-ov 7358 . . . . . . 7 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
16 fvex 6844 . . . . . . . 8 (1st𝐹) ∈ V
17 fvex 6844 . . . . . . . 8 (2nd𝐹) ∈ V
18 oppfvalg 49287 . . . . . . . 8 (((1st𝐹) ∈ V ∧ (2nd𝐹) ∈ V) → ((1st𝐹) oppFunc (2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
1916, 17, 18mp2an 692 . . . . . . 7 ((1st𝐹) oppFunc (2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2015, 19eqtr3i 2758 . . . . . 6 ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2114, 20eqtrdi 2784 . . . . 5 (𝜑 → ( oppFunc ‘𝐹) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
223, 21eleqtrd 2835 . . . 4 (𝜑𝑋 ∈ if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
2322ne0d 4291 . . 3 (𝜑 → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅)
24 iffalse 4485 . . . 4 (¬ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) = ∅)
2524necon1ai 2956 . . 3 (if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅ → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2623, 25syl 17 . 2 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2711, 26jca 511 1 (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  c0 4282  ifcif 4476  cop 4583   × cxp 5619  dom cdm 5621  Rel wrel 5626  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  tpos ctpos 8164   oppFunc coppf 49283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-tpos 8165  df-oppf 49284
This theorem is referenced by:  oppc1stflem  49448
  Copyright terms: Public domain W3C validator