Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloppf Structured version   Visualization version   GIF version

Theorem eloppf 49110
Description: The pre-image of a non-empty opposite functor is non-empty; and the second component of the pre-image is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
eloppf.g 𝐺 = (oppFunc‘𝐹)
eloppf.x (𝜑𝑋𝐺)
Assertion
Ref Expression
eloppf (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))

Proof of Theorem eloppf
StepHypRef Expression
1 eloppf.x . . . . 5 (𝜑𝑋𝐺)
2 eloppf.g . . . . 5 𝐺 = (oppFunc‘𝐹)
31, 2eleqtrdi 2839 . . . 4 (𝜑𝑋 ∈ (oppFunc‘𝐹))
4 elfvdm 6897 . . . . 5 (𝑋 ∈ (oppFunc‘𝐹) → 𝐹 ∈ dom oppFunc)
5 oppffn 49101 . . . . . 6 oppFunc Fn (V × V)
65fndmi 6624 . . . . 5 dom oppFunc = (V × V)
74, 6eleqtrdi 2839 . . . 4 (𝑋 ∈ (oppFunc‘𝐹) → 𝐹 ∈ (V × V))
83, 7syl 17 . . 3 (𝜑𝐹 ∈ (V × V))
9 0nelxp 5674 . . 3 ¬ ∅ ∈ (V × V)
10 nelne2 3024 . . 3 ((𝐹 ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → 𝐹 ≠ ∅)
118, 9, 10sylancl 586 . 2 (𝜑𝐹 ≠ ∅)
12 1st2nd2 8009 . . . . . . . 8 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
133, 7, 123syl 18 . . . . . . 7 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1413fveq2d 6864 . . . . . 6 (𝜑 → (oppFunc‘𝐹) = (oppFunc‘⟨(1st𝐹), (2nd𝐹)⟩))
15 df-ov 7392 . . . . . . 7 ((1st𝐹)oppFunc(2nd𝐹)) = (oppFunc‘⟨(1st𝐹), (2nd𝐹)⟩)
16 fvex 6873 . . . . . . . 8 (1st𝐹) ∈ V
17 fvex 6873 . . . . . . . 8 (2nd𝐹) ∈ V
18 oppfvalg 49103 . . . . . . . 8 (((1st𝐹) ∈ V ∧ (2nd𝐹) ∈ V) → ((1st𝐹)oppFunc(2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
1916, 17, 18mp2an 692 . . . . . . 7 ((1st𝐹)oppFunc(2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2015, 19eqtr3i 2755 . . . . . 6 (oppFunc‘⟨(1st𝐹), (2nd𝐹)⟩) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2114, 20eqtrdi 2781 . . . . 5 (𝜑 → (oppFunc‘𝐹) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
223, 21eleqtrd 2831 . . . 4 (𝜑𝑋 ∈ if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
2322ne0d 4307 . . 3 (𝜑 → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅)
24 iffalse 4499 . . . 4 (¬ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) = ∅)
2524necon1ai 2953 . . 3 (if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅ → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2623, 25syl 17 . 2 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2711, 26jca 511 1 (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4298  ifcif 4490  cop 4597   × cxp 5638  dom cdm 5640  Rel wrel 5645  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  tpos ctpos 8206  oppFunccoppf 49099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-tpos 8207  df-oppf 49100
This theorem is referenced by:  oppc1stflem  49258
  Copyright terms: Public domain W3C validator