Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloppf Structured version   Visualization version   GIF version

Theorem eloppf 49165
Description: The pre-image of a non-empty opposite functor is non-empty; and the second component of the pre-image is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
eloppf.g 𝐺 = ( oppFunc ‘𝐹)
eloppf.x (𝜑𝑋𝐺)
Assertion
Ref Expression
eloppf (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))

Proof of Theorem eloppf
StepHypRef Expression
1 eloppf.x . . . . 5 (𝜑𝑋𝐺)
2 eloppf.g . . . . 5 𝐺 = ( oppFunc ‘𝐹)
31, 2eleqtrdi 2841 . . . 4 (𝜑𝑋 ∈ ( oppFunc ‘𝐹))
4 elfvdm 6851 . . . . 5 (𝑋 ∈ ( oppFunc ‘𝐹) → 𝐹 ∈ dom oppFunc )
5 oppffn 49156 . . . . . 6 oppFunc Fn (V × V)
65fndmi 6580 . . . . 5 dom oppFunc = (V × V)
74, 6eleqtrdi 2841 . . . 4 (𝑋 ∈ ( oppFunc ‘𝐹) → 𝐹 ∈ (V × V))
83, 7syl 17 . . 3 (𝜑𝐹 ∈ (V × V))
9 0nelxp 5645 . . 3 ¬ ∅ ∈ (V × V)
10 nelne2 3026 . . 3 ((𝐹 ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → 𝐹 ≠ ∅)
118, 9, 10sylancl 586 . 2 (𝜑𝐹 ≠ ∅)
12 1st2nd2 7955 . . . . . . . 8 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
133, 7, 123syl 18 . . . . . . 7 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1413fveq2d 6821 . . . . . 6 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
15 df-ov 7344 . . . . . . 7 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
16 fvex 6830 . . . . . . . 8 (1st𝐹) ∈ V
17 fvex 6830 . . . . . . . 8 (2nd𝐹) ∈ V
18 oppfvalg 49158 . . . . . . . 8 (((1st𝐹) ∈ V ∧ (2nd𝐹) ∈ V) → ((1st𝐹) oppFunc (2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
1916, 17, 18mp2an 692 . . . . . . 7 ((1st𝐹) oppFunc (2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2015, 19eqtr3i 2756 . . . . . 6 ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2114, 20eqtrdi 2782 . . . . 5 (𝜑 → ( oppFunc ‘𝐹) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
223, 21eleqtrd 2833 . . . 4 (𝜑𝑋 ∈ if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
2322ne0d 4287 . . 3 (𝜑 → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅)
24 iffalse 4479 . . . 4 (¬ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) = ∅)
2524necon1ai 2955 . . 3 (if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅ → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2623, 25syl 17 . 2 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2711, 26jca 511 1 (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4278  ifcif 4470  cop 4577   × cxp 5609  dom cdm 5611  Rel wrel 5616  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  tpos ctpos 8150   oppFunc coppf 49154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-tpos 8151  df-oppf 49155
This theorem is referenced by:  oppc1stflem  49319
  Copyright terms: Public domain W3C validator