Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloppf Structured version   Visualization version   GIF version

Theorem eloppf 49095
Description: The pre-image of a non-empty opposite functor is non-empty; and the second component of the pre-image is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
eloppf.g 𝐺 = ( oppFunc ‘𝐹)
eloppf.x (𝜑𝑋𝐺)
Assertion
Ref Expression
eloppf (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))

Proof of Theorem eloppf
StepHypRef Expression
1 eloppf.x . . . . 5 (𝜑𝑋𝐺)
2 eloppf.g . . . . 5 𝐺 = ( oppFunc ‘𝐹)
31, 2eleqtrdi 2838 . . . 4 (𝜑𝑋 ∈ ( oppFunc ‘𝐹))
4 elfvdm 6877 . . . . 5 (𝑋 ∈ ( oppFunc ‘𝐹) → 𝐹 ∈ dom oppFunc )
5 oppffn 49086 . . . . . 6 oppFunc Fn (V × V)
65fndmi 6604 . . . . 5 dom oppFunc = (V × V)
74, 6eleqtrdi 2838 . . . 4 (𝑋 ∈ ( oppFunc ‘𝐹) → 𝐹 ∈ (V × V))
83, 7syl 17 . . 3 (𝜑𝐹 ∈ (V × V))
9 0nelxp 5665 . . 3 ¬ ∅ ∈ (V × V)
10 nelne2 3023 . . 3 ((𝐹 ∈ (V × V) ∧ ¬ ∅ ∈ (V × V)) → 𝐹 ≠ ∅)
118, 9, 10sylancl 586 . 2 (𝜑𝐹 ≠ ∅)
12 1st2nd2 7986 . . . . . . . 8 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
133, 7, 123syl 18 . . . . . . 7 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1413fveq2d 6844 . . . . . 6 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
15 df-ov 7372 . . . . . . 7 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
16 fvex 6853 . . . . . . . 8 (1st𝐹) ∈ V
17 fvex 6853 . . . . . . . 8 (2nd𝐹) ∈ V
18 oppfvalg 49088 . . . . . . . 8 (((1st𝐹) ∈ V ∧ (2nd𝐹) ∈ V) → ((1st𝐹) oppFunc (2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
1916, 17, 18mp2an 692 . . . . . . 7 ((1st𝐹) oppFunc (2nd𝐹)) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2015, 19eqtr3i 2754 . . . . . 6 ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅)
2114, 20eqtrdi 2780 . . . . 5 (𝜑 → ( oppFunc ‘𝐹) = if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
223, 21eleqtrd 2830 . . . 4 (𝜑𝑋 ∈ if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅))
2322ne0d 4301 . . 3 (𝜑 → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅)
24 iffalse 4493 . . . 4 (¬ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) = ∅)
2524necon1ai 2952 . . 3 (if((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)), ⟨(1st𝐹), tpos (2nd𝐹)⟩, ∅) ≠ ∅ → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2623, 25syl 17 . 2 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
2711, 26jca 511 1 (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  c0 4292  ifcif 4484  cop 4591   × cxp 5629  dom cdm 5631  Rel wrel 5636  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181   oppFunc coppf 49084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-tpos 8182  df-oppf 49085
This theorem is referenced by:  oppc1stflem  49249
  Copyright terms: Public domain W3C validator