| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for oppfval 49167. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfvallem | ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | id 22 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | 1, 2 | funcfn2 17773 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 4 | fnrel 6583 | . . 3 ⊢ (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel 𝐺) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → Rel 𝐺) |
| 6 | relxp 5634 | . . 3 ⊢ Rel ((Base‘𝐶) × (Base‘𝐶)) | |
| 7 | 3 | fndmd 6586 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → dom 𝐺 = ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | 7 | releqd 5719 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel dom 𝐺 ↔ Rel ((Base‘𝐶) × (Base‘𝐶)))) |
| 9 | 6, 8 | mpbiri 258 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → Rel dom 𝐺) |
| 10 | 5, 9 | jca 511 | 1 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5091 × cxp 5614 dom cdm 5616 Rel wrel 5621 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Func cfunc 17758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ixp 8822 df-func 17762 |
| This theorem is referenced by: oppfval 49167 |
| Copyright terms: Public domain | W3C validator |