Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfvallem Structured version   Visualization version   GIF version

Theorem oppfvallem 49029
Description: Lemma for oppfval 49030. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfvallem (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺))

Proof of Theorem oppfvallem
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 id 22 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
31, 2funcfn2 17880 . . 3 (𝐹(𝐶 Func 𝐷)𝐺𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
4 fnrel 6639 . . 3 (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel 𝐺)
53, 4syl 17 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → Rel 𝐺)
6 relxp 5672 . . 3 Rel ((Base‘𝐶) × (Base‘𝐶))
73fndmd 6642 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → dom 𝐺 = ((Base‘𝐶) × (Base‘𝐶)))
87releqd 5757 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (Rel dom 𝐺 ↔ Rel ((Base‘𝐶) × (Base‘𝐶))))
96, 8mpbiri 258 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → Rel dom 𝐺)
105, 9jca 511 1 (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   class class class wbr 5119   × cxp 5652  dom cdm 5654  Rel wrel 5659   Fn wfn 6525  cfv 6530  (class class class)co 7403  Basecbs 17226   Func cfunc 17865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-ixp 8910  df-func 17869
This theorem is referenced by:  oppfval  49030
  Copyright terms: Public domain W3C validator