| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for oppfval 49030. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfvallem | ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | id 22 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | 1, 2 | funcfn2 17880 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 4 | fnrel 6639 | . . 3 ⊢ (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel 𝐺) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → Rel 𝐺) |
| 6 | relxp 5672 | . . 3 ⊢ Rel ((Base‘𝐶) × (Base‘𝐶)) | |
| 7 | 3 | fndmd 6642 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → dom 𝐺 = ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | 7 | releqd 5757 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel dom 𝐺 ↔ Rel ((Base‘𝐶) × (Base‘𝐶)))) |
| 9 | 6, 8 | mpbiri 258 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → Rel dom 𝐺) |
| 10 | 5, 9 | jca 511 | 1 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5119 × cxp 5652 dom cdm 5654 Rel wrel 5659 Fn wfn 6525 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Func cfunc 17865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-ixp 8910 df-func 17869 |
| This theorem is referenced by: oppfval 49030 |
| Copyright terms: Public domain | W3C validator |