Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfvallem Structured version   Visualization version   GIF version

Theorem oppfvallem 49166
Description: Lemma for oppfval 49167. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfvallem (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺))

Proof of Theorem oppfvallem
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 id 22 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
31, 2funcfn2 17773 . . 3 (𝐹(𝐶 Func 𝐷)𝐺𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
4 fnrel 6583 . . 3 (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel 𝐺)
53, 4syl 17 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → Rel 𝐺)
6 relxp 5634 . . 3 Rel ((Base‘𝐶) × (Base‘𝐶))
73fndmd 6586 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → dom 𝐺 = ((Base‘𝐶) × (Base‘𝐶)))
87releqd 5719 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (Rel dom 𝐺 ↔ Rel ((Base‘𝐶) × (Base‘𝐶))))
96, 8mpbiri 258 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → Rel dom 𝐺)
105, 9jca 511 1 (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   class class class wbr 5091   × cxp 5614  dom cdm 5616  Rel wrel 5621   Fn wfn 6476  cfv 6481  (class class class)co 7346  Basecbs 17117   Func cfunc 17758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-ixp 8822  df-func 17762
This theorem is referenced by:  oppfval  49167
  Copyright terms: Public domain W3C validator