Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfvallem Structured version   Visualization version   GIF version

Theorem oppfvallem 49128
Description: Lemma for oppfval 49129. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfvallem (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺))

Proof of Theorem oppfvallem
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 id 22 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
31, 2funcfn2 17838 . . 3 (𝐹(𝐶 Func 𝐷)𝐺𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)))
4 fnrel 6623 . . 3 (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel 𝐺)
53, 4syl 17 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → Rel 𝐺)
6 relxp 5659 . . 3 Rel ((Base‘𝐶) × (Base‘𝐶))
73fndmd 6626 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → dom 𝐺 = ((Base‘𝐶) × (Base‘𝐶)))
87releqd 5744 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (Rel dom 𝐺 ↔ Rel ((Base‘𝐶) × (Base‘𝐶))))
96, 8mpbiri 258 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → Rel dom 𝐺)
105, 9jca 511 1 (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   class class class wbr 5110   × cxp 5639  dom cdm 5641  Rel wrel 5646   Fn wfn 6509  cfv 6514  (class class class)co 7390  Basecbs 17186   Func cfunc 17823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-ixp 8874  df-func 17827
This theorem is referenced by:  oppfval  49129
  Copyright terms: Public domain W3C validator