| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for oppfval 49122. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfvallem | ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | id 22 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | 1, 2 | funcfn2 17794 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐺 Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 4 | fnrel 6588 | . . 3 ⊢ (𝐺 Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel 𝐺) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → Rel 𝐺) |
| 6 | relxp 5641 | . . 3 ⊢ Rel ((Base‘𝐶) × (Base‘𝐶)) | |
| 7 | 3 | fndmd 6591 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → dom 𝐺 = ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | 7 | releqd 5726 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel dom 𝐺 ↔ Rel ((Base‘𝐶) × (Base‘𝐶)))) |
| 9 | 6, 8 | mpbiri 258 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → Rel dom 𝐺) |
| 10 | 5, 9 | jca 511 | 1 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5095 × cxp 5621 dom cdm 5623 Rel wrel 5628 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Func cfunc 17779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-ixp 8832 df-func 17783 |
| This theorem is referenced by: oppfval 49122 |
| Copyright terms: Public domain | W3C validator |