| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovmpt3rab | Structured version Visualization version GIF version | ||
| Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by AV, 17-Jul-2018.) (Revised by AV, 16-May-2019.) |
| Ref | Expression |
|---|---|
| elovmpt3rab.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
| Ref | Expression |
|---|---|
| elovmpt3rab | ⊢ ((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑇) → (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑍 ∈ 𝑀 ∧ 𝐴 ∈ 𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpt3rab.o | . 2 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
| 2 | eqidd 2737 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝑀) | |
| 3 | eqidd 2737 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝑁) | |
| 4 | 1, 2, 3 | elovmpt3rab1 7694 | 1 ⊢ ((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑇) → (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑍 ∈ 𝑀 ∧ 𝐴 ∈ 𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |