Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elovmpt3rab | Structured version Visualization version GIF version |
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by AV, 17-Jul-2018.) (Revised by AV, 16-May-2019.) |
Ref | Expression |
---|---|
elovmpt3rab.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
Ref | Expression |
---|---|
elovmpt3rab | ⊢ ((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑇) → (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑍 ∈ 𝑀 ∧ 𝐴 ∈ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpt3rab.o | . 2 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
2 | eqidd 2739 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝑀) | |
3 | eqidd 2739 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝑁) | |
4 | 1, 2, 3 | elovmpt3rab1 7507 | 1 ⊢ ((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑇) → (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑍 ∈ 𝑀 ∧ 𝐴 ∈ 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |