![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elovmpt3rab | Structured version Visualization version GIF version |
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by AV, 17-Jul-2018.) (Revised by AV, 16-May-2019.) |
Ref | Expression |
---|---|
elovmpt3rab.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
Ref | Expression |
---|---|
elovmpt3rab | ⊢ ((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑇) → (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑍 ∈ 𝑀 ∧ 𝐴 ∈ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpt3rab.o | . 2 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
2 | eqidd 2738 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝑀) | |
3 | eqidd 2738 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝑁) | |
4 | 1, 2, 3 | elovmpt3rab1 7618 | 1 ⊢ ((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑇) → (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑍 ∈ 𝑀 ∧ 𝐴 ∈ 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3410 Vcvv 3448 ↦ cmpt 5193 ‘cfv 6501 (class class class)co 7362 ∈ cmpo 7364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |