Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0reuzb Structured version   Visualization version   GIF version

Theorem sge0reuzb 44679
Description: Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
sge0reuzb.k 𝑘𝜑
sge0reuzb.p 𝑥𝜑
sge0reuzb.m (𝜑𝑀 ∈ ℤ)
sge0reuzb.z 𝑍 = (ℤ𝑀)
sge0reuzb.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0reuzb.x (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
Assertion
Ref Expression
sge0reuzb (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
Distinct variable groups:   𝐵,𝑛,𝑥   𝑘,𝑀,𝑛,𝑥   𝑘,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐵(𝑘)

Proof of Theorem sge0reuzb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0reuzb.k . . 3 𝑘𝜑
2 sge0reuzb.m . . 3 (𝜑𝑀 ∈ ℤ)
3 sge0reuzb.z . . 3 𝑍 = (ℤ𝑀)
4 sge0reuzb.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
51, 2, 3, 4sge0reuz 44678 . 2 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
6 nfv 1917 . . . 4 𝑛𝜑
7 eqid 2736 . . . 4 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
8 nfv 1917 . . . . . 6 𝑘 𝑛𝑍
91, 8nfan 1902 . . . . 5 𝑘(𝜑𝑛𝑍)
10 fzfid 13878 . . . . 5 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
11 elfzuz 13437 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
1211, 3eleqtrrdi 2849 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
1312adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
14 rge0ssre 13373 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
1514, 4sselid 3942 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
1613, 15syldan 591 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
1716adantlr 713 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
189, 10, 17fsumreclf 43807 . . . 4 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ)
196, 7, 18rnmptssd 43406 . . 3 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ)
20 uzid 12778 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
212, 20syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
2221, 3eleqtrrdi 2849 . . . . . 6 (𝜑𝑀𝑍)
23 eqidd 2737 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
24 oveq2 7365 . . . . . . . 8 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
2524sumeq1d 15586 . . . . . . 7 (𝑛 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
2625rspceeqv 3595 . . . . . 6 ((𝑀𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) → ∃𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
2722, 23, 26syl2anc 584 . . . . 5 (𝜑 → ∃𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
28 sumex 15572 . . . . . 6 Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V
2928a1i 11 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V)
307, 27, 29elrnmptd 5916 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
3130ne0d 4295 . . 3 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅)
32 sge0reuzb.x . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
33 sge0reuzb.p . . . . 5 𝑥𝜑
34 vex 3449 . . . . . . . . . . . 12 𝑦 ∈ V
357elrnmpt 5911 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵))
3634, 35ax-mp 5 . . . . . . . . . . 11 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
3736biimpi 215 . . . . . . . . . 10 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
3837adantl 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
39 nfv 1917 . . . . . . . . . . . 12 𝑛(𝜑𝑥 ∈ ℝ)
40 nfra1 3267 . . . . . . . . . . . 12 𝑛𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥
4139, 40nfan 1902 . . . . . . . . . . 11 𝑛((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
42 nfv 1917 . . . . . . . . . . 11 𝑛 𝑦𝑥
43 rspa 3231 . . . . . . . . . . . . . 14 ((∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
44 simpr 485 . . . . . . . . . . . . . . . 16 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
45 simpl 483 . . . . . . . . . . . . . . . 16 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
4644, 45eqbrtrd 5127 . . . . . . . . . . . . . . 15 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦𝑥)
4746ex 413 . . . . . . . . . . . . . 14 𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
4843, 47syl 17 . . . . . . . . . . . . 13 ((∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑛𝑍) → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
4948ex 413 . . . . . . . . . . . 12 (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥)))
5049adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥)))
5141, 42, 50rexlimd 3249 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5251adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5338, 52mpd 15 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦𝑥)
5453ralrimiva 3143 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)
5554ex 413 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥))
5655ex 413 . . . . 5 (𝜑 → (𝑥 ∈ ℝ → (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)))
5733, 56reximdai 3244 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥))
5832, 57mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)
59 supxrre 13246 . . 3 ((ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ ∧ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥) → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
6019, 31, 58, 59syl3anc 1371 . 2 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
615, 60eqtrd 2776 1 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188  ran crn 5634  cfv 6496  (class class class)co 7357  supcsup 9376  cr 11050  0cc0 11051  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cz 12499  cuz 12763  [,)cico 13266  ...cfz 13424  Σcsu 15570  Σ^csumge0 44593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-sumge0 44594
This theorem is referenced by:  meaiuninclem  44711
  Copyright terms: Public domain W3C validator