Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0reuzb Structured version   Visualization version   GIF version

Theorem sge0reuzb 44312
Description: Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
sge0reuzb.k 𝑘𝜑
sge0reuzb.p 𝑥𝜑
sge0reuzb.m (𝜑𝑀 ∈ ℤ)
sge0reuzb.z 𝑍 = (ℤ𝑀)
sge0reuzb.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0reuzb.x (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
Assertion
Ref Expression
sge0reuzb (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
Distinct variable groups:   𝐵,𝑛,𝑥   𝑘,𝑀,𝑛,𝑥   𝑘,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐵(𝑘)

Proof of Theorem sge0reuzb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0reuzb.k . . 3 𝑘𝜑
2 sge0reuzb.m . . 3 (𝜑𝑀 ∈ ℤ)
3 sge0reuzb.z . . 3 𝑍 = (ℤ𝑀)
4 sge0reuzb.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
51, 2, 3, 4sge0reuz 44311 . 2 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
6 nfv 1916 . . . 4 𝑛𝜑
7 eqid 2736 . . . 4 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
8 nfv 1916 . . . . . 6 𝑘 𝑛𝑍
91, 8nfan 1901 . . . . 5 𝑘(𝜑𝑛𝑍)
10 fzfid 13786 . . . . 5 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
11 elfzuz 13345 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
1211, 3eleqtrrdi 2848 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
1312adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
14 rge0ssre 13281 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
1514, 4sselid 3929 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
1613, 15syldan 591 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
1716adantlr 712 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
189, 10, 17fsumreclf 43442 . . . 4 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ)
196, 7, 18rnmptssd 43051 . . 3 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ)
20 uzid 12690 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
212, 20syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
2221, 3eleqtrrdi 2848 . . . . . 6 (𝜑𝑀𝑍)
23 eqidd 2737 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
24 oveq2 7337 . . . . . . . 8 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
2524sumeq1d 15504 . . . . . . 7 (𝑛 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
2625rspceeqv 3584 . . . . . 6 ((𝑀𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) → ∃𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
2722, 23, 26syl2anc 584 . . . . 5 (𝜑 → ∃𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
28 sumex 15490 . . . . . 6 Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V
2928a1i 11 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V)
307, 27, 29elrnmptd 5896 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
3130ne0d 4281 . . 3 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅)
32 sge0reuzb.x . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
33 sge0reuzb.p . . . . 5 𝑥𝜑
34 vex 3445 . . . . . . . . . . . 12 𝑦 ∈ V
357elrnmpt 5891 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵))
3634, 35ax-mp 5 . . . . . . . . . . 11 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
3736biimpi 215 . . . . . . . . . 10 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
3837adantl 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
39 nfv 1916 . . . . . . . . . . . 12 𝑛(𝜑𝑥 ∈ ℝ)
40 nfra1 3263 . . . . . . . . . . . 12 𝑛𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥
4139, 40nfan 1901 . . . . . . . . . . 11 𝑛((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
42 nfv 1916 . . . . . . . . . . 11 𝑛 𝑦𝑥
43 rspa 3227 . . . . . . . . . . . . . 14 ((∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
44 simpr 485 . . . . . . . . . . . . . . . 16 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
45 simpl 483 . . . . . . . . . . . . . . . 16 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
4644, 45eqbrtrd 5111 . . . . . . . . . . . . . . 15 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦𝑥)
4746ex 413 . . . . . . . . . . . . . 14 𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
4843, 47syl 17 . . . . . . . . . . . . 13 ((∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑛𝑍) → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
4948ex 413 . . . . . . . . . . . 12 (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥)))
5049adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥)))
5141, 42, 50rexlimd 3245 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5251adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5338, 52mpd 15 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦𝑥)
5453ralrimiva 3139 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)
5554ex 413 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥))
5655ex 413 . . . . 5 (𝜑 → (𝑥 ∈ ℝ → (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)))
5733, 56reximdai 3240 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥))
5832, 57mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)
59 supxrre 13154 . . 3 ((ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ ∧ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥) → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
6019, 31, 58, 59syl3anc 1370 . 2 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
615, 60eqtrd 2776 1 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wnf 1784  wcel 2105  wne 2940  wral 3061  wrex 3070  Vcvv 3441  wss 3897  c0 4268   class class class wbr 5089  cmpt 5172  ran crn 5615  cfv 6473  (class class class)co 7329  supcsup 9289  cr 10963  0cc0 10964  +∞cpnf 11099  *cxr 11101   < clt 11102  cle 11103  cz 12412  cuz 12675  [,)cico 13174  ...cfz 13332  Σcsu 15488  Σ^csumge0 44226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-sup 9291  df-oi 9359  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-ico 13178  df-icc 13179  df-fz 13333  df-fzo 13476  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-clim 15288  df-sum 15489  df-sumge0 44227
This theorem is referenced by:  meaiuninclem  44344
  Copyright terms: Public domain W3C validator