Step | Hyp | Ref
| Expression |
1 | | sge0reuzb.k |
. . 3
⊢
Ⅎ𝑘𝜑 |
2 | | sge0reuzb.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | sge0reuzb.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | sge0reuzb.b |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) |
5 | 1, 2, 3, 4 | sge0reuz 43985 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, <
)) |
6 | | nfv 1917 |
. . . 4
⊢
Ⅎ𝑛𝜑 |
7 | | eqid 2738 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
8 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑘 𝑛 ∈ 𝑍 |
9 | 1, 8 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑛 ∈ 𝑍) |
10 | | fzfid 13693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀...𝑛) ∈ Fin) |
11 | | elfzuz 13252 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) |
12 | 11, 3 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
13 | 12 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ 𝑍) |
14 | | rge0ssre 13188 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
15 | 14, 4 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
16 | 13, 15 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ) |
17 | 16 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ) |
18 | 9, 10, 17 | fsumreclf 43117 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ) |
19 | 6, 7, 18 | rnmptssd 42735 |
. . 3
⊢ (𝜑 → ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ) |
20 | | uzid 12597 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
21 | 2, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
22 | 21, 3 | eleqtrrdi 2850 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
23 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) |
24 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀)) |
25 | 24 | sumeq1d 15413 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) |
26 | 25 | rspceeqv 3575 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) → ∃𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
27 | 22, 23, 26 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
28 | | sumex 15399 |
. . . . . 6
⊢
Σ𝑘 ∈
(𝑀...𝑀)𝐵 ∈ V |
29 | 28 | a1i 11 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V) |
30 | 7, 27, 29 | elrnmptd 5870 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) |
31 | 30 | ne0d 4269 |
. . 3
⊢ (𝜑 → ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅) |
32 | | sge0reuzb.x |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) |
33 | | sge0reuzb.p |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
34 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
35 | 7 | elrnmpt 5865 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
37 | 36 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
38 | 37 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
39 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ℝ) |
40 | | nfra1 3144 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 |
41 | 39, 40 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) |
42 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑦 ≤ 𝑥 |
43 | | rspa 3132 |
. . . . . . . . . . . . . 14
⊢
((∀𝑛 ∈
𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) |
44 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢
((Σ𝑘 ∈
(𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) |
45 | | simpl 483 |
. . . . . . . . . . . . . . . 16
⊢
((Σ𝑘 ∈
(𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) |
46 | 44, 45 | eqbrtrd 5096 |
. . . . . . . . . . . . . . 15
⊢
((Σ𝑘 ∈
(𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦 ≤ 𝑥) |
47 | 46 | ex 413 |
. . . . . . . . . . . . . 14
⊢
(Σ𝑘 ∈
(𝑀...𝑛)𝐵 ≤ 𝑥 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥)) |
48 | 43, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢
((∀𝑛 ∈
𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 ∧ 𝑛 ∈ 𝑍) → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥)) |
49 | 48 | ex 413 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 → (𝑛 ∈ 𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥))) |
50 | 49 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) → (𝑛 ∈ 𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥))) |
51 | 41, 42, 50 | rexlimd 3250 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) → (∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥)) |
52 | 51 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛 ∈ 𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → 𝑦 ≤ 𝑥)) |
53 | 38, 52 | mpd 15 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦 ≤ 𝑥) |
54 | 53 | ralrimiva 3103 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) → ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥) |
55 | 54 | ex 413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 → ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥)) |
56 | 55 | ex 413 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ → (∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 → ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥))) |
57 | 33, 56 | reximdai 3244 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥)) |
58 | 32, 57 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥) |
59 | | supxrre 13061 |
. . 3
⊢ ((ran
(𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ≤ 𝑥) → sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran
(𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) |
60 | 19, 31, 58, 59 | syl3anc 1370 |
. 2
⊢ (𝜑 → sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran
(𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) |
61 | 5, 60 | eqtrd 2778 |
1
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) |