| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1maprnss | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 takes all values in the subring 𝑆. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| evls1maprhm.q | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| evls1maprhm.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) |
| evls1maprhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| evls1maprhm.u | ⊢ 𝑈 = (Base‘𝑃) |
| evls1maprhm.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evls1maprhm.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| evls1maprhm.y | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| evls1maprhm.f | ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
| Ref | Expression |
|---|---|
| evls1maprnss | ⊢ (𝜑 → 𝑆 ⊆ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.f | . . . 4 ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) | |
| 2 | eqid 2729 | . . . . . . . . . 10 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 3 | eqid 2729 | . . . . . . . . . 10 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
| 4 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) | |
| 5 | evls1maprhm.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
| 6 | evls1maprhm.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 7 | eqid 2729 | . . . . . . . . . 10 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | subrg1ascl 22161 | . . . . . . . . 9 ⊢ (𝜑 → (algSc‘𝑃) = ((algSc‘(Poly1‘𝑅)) ↾ 𝑆)) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (algSc‘𝑃) = ((algSc‘(Poly1‘𝑅)) ↾ 𝑆)) |
| 10 | 9 | fveq1d 6828 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) = (((algSc‘(Poly1‘𝑅)) ↾ 𝑆)‘𝑦)) |
| 11 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 12 | 11 | fvresd 6846 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((algSc‘(Poly1‘𝑅)) ↾ 𝑆)‘𝑦) = ((algSc‘(Poly1‘𝑅))‘𝑦)) |
| 13 | 10, 12 | eqtrd 2764 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) = ((algSc‘(Poly1‘𝑅))‘𝑦)) |
| 14 | evls1maprhm.u | . . . . . . 7 ⊢ 𝑈 = (Base‘𝑃) | |
| 15 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ (SubRing‘𝑅)) |
| 16 | 3, 4, 2, 5, 14, 15, 11 | asclply1subcl 22277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘(Poly1‘𝑅))‘𝑦) ∈ 𝑈) |
| 17 | 13, 16 | eqeltrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) ∈ 𝑈) |
| 18 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑂‘𝑝) = (𝑂‘((algSc‘𝑃)‘𝑦))) | |
| 19 | 18 | fveq1d 6828 | . . . . . . 7 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → ((𝑂‘𝑝)‘𝑋) = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)) |
| 20 | 19 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑦 = ((𝑂‘𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))) |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑝 = ((algSc‘𝑃)‘𝑦)) → (𝑦 = ((𝑂‘𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))) |
| 22 | evls1maprhm.q | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 23 | evls1maprhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 24 | evls1maprhm.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 25 | 24 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑅 ∈ CRing) |
| 26 | 22, 5, 4, 23, 7, 25, 15, 11 | evls1sca 22226 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑂‘((algSc‘𝑃)‘𝑦)) = (𝐵 × {𝑦})) |
| 27 | 26 | fveq1d 6828 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋) = ((𝐵 × {𝑦})‘𝑋)) |
| 28 | evls1maprhm.y | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 29 | 28 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 30 | vex 3442 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 31 | 30 | fvconst2 7144 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → ((𝐵 × {𝑦})‘𝑋) = 𝑦) |
| 32 | 29, 31 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐵 × {𝑦})‘𝑋) = 𝑦) |
| 33 | 27, 32 | eqtr2d 2765 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)) |
| 34 | 17, 21, 33 | rspcedvd 3581 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ∃𝑝 ∈ 𝑈 𝑦 = ((𝑂‘𝑝)‘𝑋)) |
| 35 | 1, 34, 11 | elrnmptd 5909 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran 𝐹) |
| 36 | 35 | ex 412 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑆 → 𝑦 ∈ ran 𝐹)) |
| 37 | 36 | ssrdv 3943 | 1 ⊢ (𝜑 → 𝑆 ⊆ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 ↦ cmpt 5176 × cxp 5621 ran crn 5624 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 CRingccrg 20137 SubRingcsubrg 20472 algSccascl 21777 Poly1cpl1 22077 evalSub1 ces1 22216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-assa 21778 df-asp 21779 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-evls 21997 df-psr1 22080 df-ply1 22082 df-evls1 22218 |
| This theorem is referenced by: algextdeglem4 33686 |
| Copyright terms: Public domain | W3C validator |