MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1maprnss Structured version   Visualization version   GIF version

Theorem evls1maprnss 22382
Description: The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 takes all values in the subring 𝑆. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
evls1maprhm.q 𝑂 = (𝑅 evalSub1 𝑆)
evls1maprhm.p 𝑃 = (Poly1‘(𝑅s 𝑆))
evls1maprhm.b 𝐵 = (Base‘𝑅)
evls1maprhm.u 𝑈 = (Base‘𝑃)
evls1maprhm.r (𝜑𝑅 ∈ CRing)
evls1maprhm.s (𝜑𝑆 ∈ (SubRing‘𝑅))
evls1maprhm.y (𝜑𝑋𝐵)
evls1maprhm.f 𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋))
Assertion
Ref Expression
evls1maprnss (𝜑𝑆 ⊆ ran 𝐹)
Distinct variable groups:   𝐵,𝑝   𝑂,𝑝   𝑃,𝑝   𝑈,𝑝   𝑋,𝑝   𝜑,𝑝   𝑆,𝑝
Allowed substitution hints:   𝑅(𝑝)   𝐹(𝑝)

Proof of Theorem evls1maprnss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 evls1maprhm.f . . . 4 𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋))
2 eqid 2737 . . . . . . . . . 10 (Poly1𝑅) = (Poly1𝑅)
3 eqid 2737 . . . . . . . . . 10 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
4 eqid 2737 . . . . . . . . . 10 (𝑅s 𝑆) = (𝑅s 𝑆)
5 evls1maprhm.p . . . . . . . . . 10 𝑃 = (Poly1‘(𝑅s 𝑆))
6 evls1maprhm.s . . . . . . . . . 10 (𝜑𝑆 ∈ (SubRing‘𝑅))
7 eqid 2737 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
82, 3, 4, 5, 6, 7subrg1ascl 22262 . . . . . . . . 9 (𝜑 → (algSc‘𝑃) = ((algSc‘(Poly1𝑅)) ↾ 𝑆))
98adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → (algSc‘𝑃) = ((algSc‘(Poly1𝑅)) ↾ 𝑆))
109fveq1d 6908 . . . . . . 7 ((𝜑𝑦𝑆) → ((algSc‘𝑃)‘𝑦) = (((algSc‘(Poly1𝑅)) ↾ 𝑆)‘𝑦))
11 simpr 484 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑦𝑆)
1211fvresd 6926 . . . . . . 7 ((𝜑𝑦𝑆) → (((algSc‘(Poly1𝑅)) ↾ 𝑆)‘𝑦) = ((algSc‘(Poly1𝑅))‘𝑦))
1310, 12eqtrd 2777 . . . . . 6 ((𝜑𝑦𝑆) → ((algSc‘𝑃)‘𝑦) = ((algSc‘(Poly1𝑅))‘𝑦))
14 evls1maprhm.u . . . . . . 7 𝑈 = (Base‘𝑃)
156adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑆 ∈ (SubRing‘𝑅))
163, 4, 2, 5, 14, 15, 11asclply1subcl 22378 . . . . . 6 ((𝜑𝑦𝑆) → ((algSc‘(Poly1𝑅))‘𝑦) ∈ 𝑈)
1713, 16eqeltrd 2841 . . . . 5 ((𝜑𝑦𝑆) → ((algSc‘𝑃)‘𝑦) ∈ 𝑈)
18 fveq2 6906 . . . . . . . 8 (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑂𝑝) = (𝑂‘((algSc‘𝑃)‘𝑦)))
1918fveq1d 6908 . . . . . . 7 (𝑝 = ((algSc‘𝑃)‘𝑦) → ((𝑂𝑝)‘𝑋) = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))
2019eqeq2d 2748 . . . . . 6 (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑦 = ((𝑂𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)))
2120adantl 481 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑝 = ((algSc‘𝑃)‘𝑦)) → (𝑦 = ((𝑂𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)))
22 evls1maprhm.q . . . . . . . 8 𝑂 = (𝑅 evalSub1 𝑆)
23 evls1maprhm.b . . . . . . . 8 𝐵 = (Base‘𝑅)
24 evls1maprhm.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
2524adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑅 ∈ CRing)
2622, 5, 4, 23, 7, 25, 15, 11evls1sca 22327 . . . . . . 7 ((𝜑𝑦𝑆) → (𝑂‘((algSc‘𝑃)‘𝑦)) = (𝐵 × {𝑦}))
2726fveq1d 6908 . . . . . 6 ((𝜑𝑦𝑆) → ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋) = ((𝐵 × {𝑦})‘𝑋))
28 evls1maprhm.y . . . . . . . 8 (𝜑𝑋𝐵)
2928adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑋𝐵)
30 vex 3484 . . . . . . . 8 𝑦 ∈ V
3130fvconst2 7224 . . . . . . 7 (𝑋𝐵 → ((𝐵 × {𝑦})‘𝑋) = 𝑦)
3229, 31syl 17 . . . . . 6 ((𝜑𝑦𝑆) → ((𝐵 × {𝑦})‘𝑋) = 𝑦)
3327, 32eqtr2d 2778 . . . . 5 ((𝜑𝑦𝑆) → 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))
3417, 21, 33rspcedvd 3624 . . . 4 ((𝜑𝑦𝑆) → ∃𝑝𝑈 𝑦 = ((𝑂𝑝)‘𝑋))
351, 34, 11elrnmptd 5974 . . 3 ((𝜑𝑦𝑆) → 𝑦 ∈ ran 𝐹)
3635ex 412 . 2 (𝜑 → (𝑦𝑆𝑦 ∈ ran 𝐹))
3736ssrdv 3989 1 (𝜑𝑆 ⊆ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3951  {csn 4626  cmpt 5225   × cxp 5683  ran crn 5686  cres 5687  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  CRingccrg 20231  SubRingcsubrg 20569  algSccascl 21872  Poly1cpl1 22178   evalSub1 ces1 22317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-psr1 22181  df-ply1 22183  df-evls1 22319
This theorem is referenced by:  algextdeglem4  33761
  Copyright terms: Public domain W3C validator