MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1maprnss Structured version   Visualization version   GIF version

Theorem evls1maprnss 22316
Description: The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 takes all values in the subring 𝑆. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
evls1maprhm.q 𝑂 = (𝑅 evalSub1 𝑆)
evls1maprhm.p 𝑃 = (Poly1‘(𝑅s 𝑆))
evls1maprhm.b 𝐵 = (Base‘𝑅)
evls1maprhm.u 𝑈 = (Base‘𝑃)
evls1maprhm.r (𝜑𝑅 ∈ CRing)
evls1maprhm.s (𝜑𝑆 ∈ (SubRing‘𝑅))
evls1maprhm.y (𝜑𝑋𝐵)
evls1maprhm.f 𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋))
Assertion
Ref Expression
evls1maprnss (𝜑𝑆 ⊆ ran 𝐹)
Distinct variable groups:   𝐵,𝑝   𝑂,𝑝   𝑃,𝑝   𝑈,𝑝   𝑋,𝑝   𝜑,𝑝   𝑆,𝑝
Allowed substitution hints:   𝑅(𝑝)   𝐹(𝑝)

Proof of Theorem evls1maprnss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 evls1maprhm.f . . . 4 𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋))
2 eqid 2735 . . . . . . . . . 10 (Poly1𝑅) = (Poly1𝑅)
3 eqid 2735 . . . . . . . . . 10 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
4 eqid 2735 . . . . . . . . . 10 (𝑅s 𝑆) = (𝑅s 𝑆)
5 evls1maprhm.p . . . . . . . . . 10 𝑃 = (Poly1‘(𝑅s 𝑆))
6 evls1maprhm.s . . . . . . . . . 10 (𝜑𝑆 ∈ (SubRing‘𝑅))
7 eqid 2735 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
82, 3, 4, 5, 6, 7subrg1ascl 22196 . . . . . . . . 9 (𝜑 → (algSc‘𝑃) = ((algSc‘(Poly1𝑅)) ↾ 𝑆))
98adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → (algSc‘𝑃) = ((algSc‘(Poly1𝑅)) ↾ 𝑆))
109fveq1d 6878 . . . . . . 7 ((𝜑𝑦𝑆) → ((algSc‘𝑃)‘𝑦) = (((algSc‘(Poly1𝑅)) ↾ 𝑆)‘𝑦))
11 simpr 484 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑦𝑆)
1211fvresd 6896 . . . . . . 7 ((𝜑𝑦𝑆) → (((algSc‘(Poly1𝑅)) ↾ 𝑆)‘𝑦) = ((algSc‘(Poly1𝑅))‘𝑦))
1310, 12eqtrd 2770 . . . . . 6 ((𝜑𝑦𝑆) → ((algSc‘𝑃)‘𝑦) = ((algSc‘(Poly1𝑅))‘𝑦))
14 evls1maprhm.u . . . . . . 7 𝑈 = (Base‘𝑃)
156adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑆 ∈ (SubRing‘𝑅))
163, 4, 2, 5, 14, 15, 11asclply1subcl 22312 . . . . . 6 ((𝜑𝑦𝑆) → ((algSc‘(Poly1𝑅))‘𝑦) ∈ 𝑈)
1713, 16eqeltrd 2834 . . . . 5 ((𝜑𝑦𝑆) → ((algSc‘𝑃)‘𝑦) ∈ 𝑈)
18 fveq2 6876 . . . . . . . 8 (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑂𝑝) = (𝑂‘((algSc‘𝑃)‘𝑦)))
1918fveq1d 6878 . . . . . . 7 (𝑝 = ((algSc‘𝑃)‘𝑦) → ((𝑂𝑝)‘𝑋) = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))
2019eqeq2d 2746 . . . . . 6 (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑦 = ((𝑂𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)))
2120adantl 481 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑝 = ((algSc‘𝑃)‘𝑦)) → (𝑦 = ((𝑂𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)))
22 evls1maprhm.q . . . . . . . 8 𝑂 = (𝑅 evalSub1 𝑆)
23 evls1maprhm.b . . . . . . . 8 𝐵 = (Base‘𝑅)
24 evls1maprhm.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
2524adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑅 ∈ CRing)
2622, 5, 4, 23, 7, 25, 15, 11evls1sca 22261 . . . . . . 7 ((𝜑𝑦𝑆) → (𝑂‘((algSc‘𝑃)‘𝑦)) = (𝐵 × {𝑦}))
2726fveq1d 6878 . . . . . 6 ((𝜑𝑦𝑆) → ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋) = ((𝐵 × {𝑦})‘𝑋))
28 evls1maprhm.y . . . . . . . 8 (𝜑𝑋𝐵)
2928adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑋𝐵)
30 vex 3463 . . . . . . . 8 𝑦 ∈ V
3130fvconst2 7196 . . . . . . 7 (𝑋𝐵 → ((𝐵 × {𝑦})‘𝑋) = 𝑦)
3229, 31syl 17 . . . . . 6 ((𝜑𝑦𝑆) → ((𝐵 × {𝑦})‘𝑋) = 𝑦)
3327, 32eqtr2d 2771 . . . . 5 ((𝜑𝑦𝑆) → 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))
3417, 21, 33rspcedvd 3603 . . . 4 ((𝜑𝑦𝑆) → ∃𝑝𝑈 𝑦 = ((𝑂𝑝)‘𝑋))
351, 34, 11elrnmptd 5943 . . 3 ((𝜑𝑦𝑆) → 𝑦 ∈ ran 𝐹)
3635ex 412 . 2 (𝜑 → (𝑦𝑆𝑦 ∈ ran 𝐹))
3736ssrdv 3964 1 (𝜑𝑆 ⊆ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3926  {csn 4601  cmpt 5201   × cxp 5652  ran crn 5655  cres 5656  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  CRingccrg 20194  SubRingcsubrg 20529  algSccascl 21812  Poly1cpl1 22112   evalSub1 ces1 22251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-psr1 22115  df-ply1 22117  df-evls1 22253
This theorem is referenced by:  algextdeglem4  33754
  Copyright terms: Public domain W3C validator