![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1maprnss | Structured version Visualization version GIF version |
Description: The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 takes all values in the subring 𝑆. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
Ref | Expression |
---|---|
evls1maprhm.q | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
evls1maprhm.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) |
evls1maprhm.b | ⊢ 𝐵 = (Base‘𝑅) |
evls1maprhm.u | ⊢ 𝑈 = (Base‘𝑃) |
evls1maprhm.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evls1maprhm.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
evls1maprhm.y | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
evls1maprhm.f | ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
Ref | Expression |
---|---|
evls1maprnss | ⊢ (𝜑 → 𝑆 ⊆ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1maprhm.f | . . . 4 ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) | |
2 | eqid 2725 | . . . . . . . . . 10 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
3 | eqid 2725 | . . . . . . . . . 10 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
4 | eqid 2725 | . . . . . . . . . 10 ⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) | |
5 | evls1maprhm.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
6 | evls1maprhm.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
7 | eqid 2725 | . . . . . . . . . 10 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | subrg1ascl 22203 | . . . . . . . . 9 ⊢ (𝜑 → (algSc‘𝑃) = ((algSc‘(Poly1‘𝑅)) ↾ 𝑆)) |
9 | 8 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (algSc‘𝑃) = ((algSc‘(Poly1‘𝑅)) ↾ 𝑆)) |
10 | 9 | fveq1d 6898 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) = (((algSc‘(Poly1‘𝑅)) ↾ 𝑆)‘𝑦)) |
11 | simpr 483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
12 | 11 | fvresd 6916 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((algSc‘(Poly1‘𝑅)) ↾ 𝑆)‘𝑦) = ((algSc‘(Poly1‘𝑅))‘𝑦)) |
13 | 10, 12 | eqtrd 2765 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) = ((algSc‘(Poly1‘𝑅))‘𝑦)) |
14 | evls1maprhm.u | . . . . . . 7 ⊢ 𝑈 = (Base‘𝑃) | |
15 | 6 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ (SubRing‘𝑅)) |
16 | 3, 4, 2, 5, 14, 15, 11 | asclply1subcl 22318 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘(Poly1‘𝑅))‘𝑦) ∈ 𝑈) |
17 | 13, 16 | eqeltrd 2825 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) ∈ 𝑈) |
18 | fveq2 6896 | . . . . . . . 8 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑂‘𝑝) = (𝑂‘((algSc‘𝑃)‘𝑦))) | |
19 | 18 | fveq1d 6898 | . . . . . . 7 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → ((𝑂‘𝑝)‘𝑋) = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)) |
20 | 19 | eqeq2d 2736 | . . . . . 6 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑦 = ((𝑂‘𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))) |
21 | 20 | adantl 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑝 = ((algSc‘𝑃)‘𝑦)) → (𝑦 = ((𝑂‘𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))) |
22 | evls1maprhm.q | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
23 | evls1maprhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
24 | evls1maprhm.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
25 | 24 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑅 ∈ CRing) |
26 | 22, 5, 4, 23, 7, 25, 15, 11 | evls1sca 22267 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑂‘((algSc‘𝑃)‘𝑦)) = (𝐵 × {𝑦})) |
27 | 26 | fveq1d 6898 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋) = ((𝐵 × {𝑦})‘𝑋)) |
28 | evls1maprhm.y | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
29 | 28 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
30 | vex 3465 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
31 | 30 | fvconst2 7216 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → ((𝐵 × {𝑦})‘𝑋) = 𝑦) |
32 | 29, 31 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐵 × {𝑦})‘𝑋) = 𝑦) |
33 | 27, 32 | eqtr2d 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)) |
34 | 17, 21, 33 | rspcedvd 3608 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ∃𝑝 ∈ 𝑈 𝑦 = ((𝑂‘𝑝)‘𝑋)) |
35 | 1, 34, 11 | elrnmptd 5963 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran 𝐹) |
36 | 35 | ex 411 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑆 → 𝑦 ∈ ran 𝐹)) |
37 | 36 | ssrdv 3982 | 1 ⊢ (𝜑 → 𝑆 ⊆ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 {csn 4630 ↦ cmpt 5232 × cxp 5676 ran crn 5679 ↾ cres 5680 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 CRingccrg 20186 SubRingcsubrg 20518 algSccascl 21803 Poly1cpl1 22119 evalSub1 ces1 22257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-ghm 19176 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-srg 20139 df-ring 20187 df-cring 20188 df-rhm 20423 df-subrng 20495 df-subrg 20520 df-lmod 20757 df-lss 20828 df-lsp 20868 df-assa 21804 df-asp 21805 df-ascl 21806 df-psr 21859 df-mvr 21860 df-mpl 21861 df-opsr 21863 df-evls 22040 df-psr1 22122 df-ply1 22124 df-evls1 22259 |
This theorem is referenced by: algextdeglem4 33519 |
Copyright terms: Public domain | W3C validator |