| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1maprnss | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 takes all values in the subring 𝑆. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| evls1maprhm.q | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| evls1maprhm.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) |
| evls1maprhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| evls1maprhm.u | ⊢ 𝑈 = (Base‘𝑃) |
| evls1maprhm.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evls1maprhm.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| evls1maprhm.y | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| evls1maprhm.f | ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
| Ref | Expression |
|---|---|
| evls1maprnss | ⊢ (𝜑 → 𝑆 ⊆ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.f | . . . 4 ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) | |
| 2 | eqid 2733 | . . . . . . . . . 10 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 3 | eqid 2733 | . . . . . . . . . 10 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
| 4 | eqid 2733 | . . . . . . . . . 10 ⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) | |
| 5 | evls1maprhm.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
| 6 | evls1maprhm.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 7 | eqid 2733 | . . . . . . . . . 10 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | subrg1ascl 22176 | . . . . . . . . 9 ⊢ (𝜑 → (algSc‘𝑃) = ((algSc‘(Poly1‘𝑅)) ↾ 𝑆)) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (algSc‘𝑃) = ((algSc‘(Poly1‘𝑅)) ↾ 𝑆)) |
| 10 | 9 | fveq1d 6832 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) = (((algSc‘(Poly1‘𝑅)) ↾ 𝑆)‘𝑦)) |
| 11 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 12 | 11 | fvresd 6850 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((algSc‘(Poly1‘𝑅)) ↾ 𝑆)‘𝑦) = ((algSc‘(Poly1‘𝑅))‘𝑦)) |
| 13 | 10, 12 | eqtrd 2768 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) = ((algSc‘(Poly1‘𝑅))‘𝑦)) |
| 14 | evls1maprhm.u | . . . . . . 7 ⊢ 𝑈 = (Base‘𝑃) | |
| 15 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ (SubRing‘𝑅)) |
| 16 | 3, 4, 2, 5, 14, 15, 11 | asclply1subcl 22292 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘(Poly1‘𝑅))‘𝑦) ∈ 𝑈) |
| 17 | 13, 16 | eqeltrd 2833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((algSc‘𝑃)‘𝑦) ∈ 𝑈) |
| 18 | fveq2 6830 | . . . . . . . 8 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑂‘𝑝) = (𝑂‘((algSc‘𝑃)‘𝑦))) | |
| 19 | 18 | fveq1d 6832 | . . . . . . 7 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → ((𝑂‘𝑝)‘𝑋) = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)) |
| 20 | 19 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑝 = ((algSc‘𝑃)‘𝑦) → (𝑦 = ((𝑂‘𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))) |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑝 = ((algSc‘𝑃)‘𝑦)) → (𝑦 = ((𝑂‘𝑝)‘𝑋) ↔ 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋))) |
| 22 | evls1maprhm.q | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 23 | evls1maprhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 24 | evls1maprhm.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 25 | 24 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑅 ∈ CRing) |
| 26 | 22, 5, 4, 23, 7, 25, 15, 11 | evls1sca 22241 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑂‘((algSc‘𝑃)‘𝑦)) = (𝐵 × {𝑦})) |
| 27 | 26 | fveq1d 6832 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋) = ((𝐵 × {𝑦})‘𝑋)) |
| 28 | evls1maprhm.y | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 29 | 28 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 30 | vex 3441 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 31 | 30 | fvconst2 7146 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → ((𝐵 × {𝑦})‘𝑋) = 𝑦) |
| 32 | 29, 31 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐵 × {𝑦})‘𝑋) = 𝑦) |
| 33 | 27, 32 | eqtr2d 2769 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 = ((𝑂‘((algSc‘𝑃)‘𝑦))‘𝑋)) |
| 34 | 17, 21, 33 | rspcedvd 3575 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ∃𝑝 ∈ 𝑈 𝑦 = ((𝑂‘𝑝)‘𝑋)) |
| 35 | 1, 34, 11 | elrnmptd 5909 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran 𝐹) |
| 36 | 35 | ex 412 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑆 → 𝑦 ∈ ran 𝐹)) |
| 37 | 36 | ssrdv 3936 | 1 ⊢ (𝜑 → 𝑆 ⊆ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 ↦ cmpt 5176 × cxp 5619 ran crn 5622 ↾ cres 5623 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 ↾s cress 17145 CRingccrg 20156 SubRingcsubrg 20488 algSccascl 21793 Poly1cpl1 22092 evalSub1 ces1 22231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-ofr 7619 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-gsum 17350 df-prds 17355 df-pws 17357 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18985 df-subg 19040 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-srg 20109 df-ring 20157 df-cring 20158 df-rhm 20394 df-subrng 20465 df-subrg 20489 df-lmod 20799 df-lss 20869 df-lsp 20909 df-assa 21794 df-asp 21795 df-ascl 21796 df-psr 21850 df-mvr 21851 df-mpl 21852 df-opsr 21854 df-evls 22012 df-psr1 22095 df-ply1 22097 df-evls1 22233 |
| This theorem is referenced by: algextdeglem4 33756 |
| Copyright terms: Public domain | W3C validator |