MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ennn Structured version   Visualization version   GIF version

Theorem nn0ennn 13699
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn 0 ≈ ℕ

Proof of Theorem nn0ennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 12239 . 2 0 ∈ V
2 nnex 11979 . 2 ℕ ∈ V
3 nn0p1nn 12272 . 2 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4 nnm1nn0 12274 . 2 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
5 nncn 11981 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6 nn0cn 12243 . . 3 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
7 ax-1cn 10929 . . . . . 6 1 ∈ ℂ
8 subadd 11224 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
97, 8mp3an2 1448 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
10 eqcom 2745 . . . . 5 (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥)
11 eqcom 2745 . . . . 5 (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦)
129, 10, 113bitr4g 314 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥)))
13 addcom 11161 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1))
147, 13mpan 687 . . . . . 6 (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1))
1514eqeq2d 2749 . . . . 5 (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1615adantl 482 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1712, 16bitrd 278 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
185, 6, 17syl2anr 597 . 2 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
191, 2, 3, 4, 18en3i 8779 1 0 ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cen 8730  cc 10869  1c1 10872   + caddc 10874  cmin 11205  cn 11973  0cn0 12233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-nn 11974  df-n0 12234
This theorem is referenced by:  nnenom  13700  bitsf1  16153  dyadmbl  24764  aannenlem3  25490  poimirlem32  35809  heiborlem3  35971  heibor  35979
  Copyright terms: Public domain W3C validator