| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ennn | Structured version Visualization version GIF version | ||
| Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ennn | ⊢ ℕ0 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex 12507 | . 2 ⊢ ℕ0 ∈ V | |
| 2 | nnex 12246 | . 2 ⊢ ℕ ∈ V | |
| 3 | nn0p1nn 12540 | . 2 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ) | |
| 4 | nnm1nn0 12542 | . 2 ⊢ (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0) | |
| 5 | nncn 12248 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 6 | nn0cn 12511 | . . 3 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 7 | ax-1cn 11187 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 8 | subadd 11485 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) | |
| 9 | 7, 8 | mp3an2 1451 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) |
| 10 | eqcom 2742 | . . . . 5 ⊢ (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥) | |
| 11 | eqcom 2742 | . . . . 5 ⊢ (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦) | |
| 12 | 9, 10, 11 | 3bitr4g 314 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥))) |
| 13 | addcom 11421 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1)) | |
| 14 | 7, 13 | mpan 690 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1)) |
| 15 | 14 | eqeq2d 2746 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
| 17 | 12, 16 | bitrd 279 | . . 3 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
| 18 | 5, 6, 17 | syl2anr 597 | . 2 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
| 19 | 1, 2, 3, 4, 18 | en3i 9005 | 1 ⊢ ℕ0 ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ≈ cen 8956 ℂcc 11127 1c1 11130 + caddc 11132 − cmin 11466 ℕcn 12240 ℕ0cn0 12501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-nn 12241 df-n0 12502 |
| This theorem is referenced by: nnenom 13998 bitsf1 16465 dyadmbl 25553 aannenlem3 26290 poimirlem32 37676 heiborlem3 37837 heibor 37845 |
| Copyright terms: Public domain | W3C validator |