MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpmapenlem Structured version   Visualization version   GIF version

Theorem xpmapenlem 9146
Description: Lemma for xpmapen 9147. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1 𝐴 ∈ V
xpmapen.2 𝐵 ∈ V
xpmapen.3 𝐶 ∈ V
xpmapenlem.4 𝐷 = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
xpmapenlem.5 𝑅 = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
xpmapenlem.6 𝑆 = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
Assertion
Ref Expression
xpmapenlem ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴m 𝐶) × (𝐵m 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑦,𝐷,𝑧   𝑦,𝑅,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑦)

Proof of Theorem xpmapenlem
StepHypRef Expression
1 ovex 7444 . 2 ((𝐴 × 𝐵) ↑m 𝐶) ∈ V
2 ovex 7444 . . 3 (𝐴m 𝐶) ∈ V
3 ovex 7444 . . 3 (𝐵m 𝐶) ∈ V
42, 3xpex 7742 . 2 ((𝐴m 𝐶) × (𝐵m 𝐶)) ∈ V
5 xpmapen.1 . . . . . . . . 9 𝐴 ∈ V
6 xpmapen.2 . . . . . . . . 9 𝐵 ∈ V
75, 6xpex 7742 . . . . . . . 8 (𝐴 × 𝐵) ∈ V
8 xpmapen.3 . . . . . . . 8 𝐶 ∈ V
97, 8elmap 8867 . . . . . . 7 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ↔ 𝑥:𝐶⟶(𝐴 × 𝐵))
10 ffvelcdm 7082 . . . . . . 7 ((𝑥:𝐶⟶(𝐴 × 𝐵) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
119, 10sylanb 579 . . . . . 6 ((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
12 xp1st 8009 . . . . . 6 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (1st ‘(𝑥𝑧)) ∈ 𝐴)
1311, 12syl 17 . . . . 5 ((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) ∈ 𝐴)
14 xpmapenlem.4 . . . . 5 𝐷 = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
1513, 14fmptd 7114 . . . 4 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → 𝐷:𝐶𝐴)
165, 8elmap 8867 . . . 4 (𝐷 ∈ (𝐴m 𝐶) ↔ 𝐷:𝐶𝐴)
1715, 16sylibr 233 . . 3 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → 𝐷 ∈ (𝐴m 𝐶))
18 xp2nd 8010 . . . . . 6 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (2nd ‘(𝑥𝑧)) ∈ 𝐵)
1911, 18syl 17 . . . . 5 ((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) ∈ 𝐵)
20 xpmapenlem.5 . . . . 5 𝑅 = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
2119, 20fmptd 7114 . . . 4 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → 𝑅:𝐶𝐵)
226, 8elmap 8867 . . . 4 (𝑅 ∈ (𝐵m 𝐶) ↔ 𝑅:𝐶𝐵)
2321, 22sylibr 233 . . 3 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → 𝑅 ∈ (𝐵m 𝐶))
2417, 23opelxpd 5714 . 2 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → ⟨𝐷, 𝑅⟩ ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)))
25 xp1st 8009 . . . . . . 7 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (1st𝑦) ∈ (𝐴m 𝐶))
265, 8elmap 8867 . . . . . . 7 ((1st𝑦) ∈ (𝐴m 𝐶) ↔ (1st𝑦):𝐶𝐴)
2725, 26sylib 217 . . . . . 6 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (1st𝑦):𝐶𝐴)
2827ffvelcdmda 7085 . . . . 5 ((𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) ∧ 𝑧𝐶) → ((1st𝑦)‘𝑧) ∈ 𝐴)
29 xp2nd 8010 . . . . . . 7 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (2nd𝑦) ∈ (𝐵m 𝐶))
306, 8elmap 8867 . . . . . . 7 ((2nd𝑦) ∈ (𝐵m 𝐶) ↔ (2nd𝑦):𝐶𝐵)
3129, 30sylib 217 . . . . . 6 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (2nd𝑦):𝐶𝐵)
3231ffvelcdmda 7085 . . . . 5 ((𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) ∧ 𝑧𝐶) → ((2nd𝑦)‘𝑧) ∈ 𝐵)
3328, 32opelxpd 5714 . . . 4 ((𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ (𝐴 × 𝐵))
34 xpmapenlem.6 . . . 4 𝑆 = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
3533, 34fmptd 7114 . . 3 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → 𝑆:𝐶⟶(𝐴 × 𝐵))
367, 8elmap 8867 . . 3 (𝑆 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ↔ 𝑆:𝐶⟶(𝐴 × 𝐵))
3735, 36sylibr 233 . 2 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → 𝑆 ∈ ((𝐴 × 𝐵) ↑m 𝐶))
38 1st2nd2 8016 . . . . 5 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3938ad2antlr 723 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
4027feqmptd 6959 . . . . . . 7 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (1st𝑦) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
4140ad2antlr 723 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (1st𝑦) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
42 simplr 765 . . . . . . . . . . . 12 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → 𝑥 = 𝑆)
4342fveq1d 6892 . . . . . . . . . . 11 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑥𝑧) = (𝑆𝑧))
44 opex 5463 . . . . . . . . . . . . 13 ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ V
4534fvmpt2 7008 . . . . . . . . . . . . 13 ((𝑧𝐶 ∧ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ V) → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4644, 45mpan2 687 . . . . . . . . . . . 12 (𝑧𝐶 → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4746adantl 480 . . . . . . . . . . 11 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4843, 47eqtrd 2770 . . . . . . . . . 10 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑥𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4948fveq2d 6894 . . . . . . . . 9 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) = (1st ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩))
50 fvex 6903 . . . . . . . . . 10 ((1st𝑦)‘𝑧) ∈ V
51 fvex 6903 . . . . . . . . . 10 ((2nd𝑦)‘𝑧) ∈ V
5250, 51op1st 7985 . . . . . . . . 9 (1st ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = ((1st𝑦)‘𝑧)
5349, 52eqtrdi 2786 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) = ((1st𝑦)‘𝑧))
5453mpteq2dva 5247 . . . . . . 7 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (𝑧𝐶 ↦ (1st ‘(𝑥𝑧))) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
5514, 54eqtrid 2782 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → 𝐷 = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
5641, 55eqtr4d 2773 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (1st𝑦) = 𝐷)
5731feqmptd 6959 . . . . . . 7 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (2nd𝑦) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
5857ad2antlr 723 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (2nd𝑦) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
5948fveq2d 6894 . . . . . . . . 9 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) = (2nd ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩))
6050, 51op2nd 7986 . . . . . . . . 9 (2nd ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = ((2nd𝑦)‘𝑧)
6159, 60eqtrdi 2786 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) = ((2nd𝑦)‘𝑧))
6261mpteq2dva 5247 . . . . . . 7 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧))) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
6320, 62eqtrid 2782 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → 𝑅 = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
6458, 63eqtr4d 2773 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (2nd𝑦) = 𝑅)
6556, 64opeq12d 4880 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝐷, 𝑅⟩)
6639, 65eqtrd 2770 . . 3 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → 𝑦 = ⟨𝐷, 𝑅⟩)
67 simpll 763 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶))
6867, 9sylib 217 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥:𝐶⟶(𝐴 × 𝐵))
6968feqmptd 6959 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 = (𝑧𝐶 ↦ (𝑥𝑧)))
70 simpr 483 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑦 = ⟨𝐷, 𝑅⟩)
7170fveq2d 6894 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st𝑦) = (1st ‘⟨𝐷, 𝑅⟩))
7217ad2antrr 722 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝐷 ∈ (𝐴m 𝐶))
7323ad2antrr 722 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑅 ∈ (𝐵m 𝐶))
74 op1stg 7989 . . . . . . . . . . . 12 ((𝐷 ∈ (𝐴m 𝐶) ∧ 𝑅 ∈ (𝐵m 𝐶)) → (1st ‘⟨𝐷, 𝑅⟩) = 𝐷)
7572, 73, 74syl2anc 582 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st ‘⟨𝐷, 𝑅⟩) = 𝐷)
7671, 75eqtrd 2770 . . . . . . . . . 10 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st𝑦) = 𝐷)
7776fveq1d 6892 . . . . . . . . 9 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → ((1st𝑦)‘𝑧) = (𝐷𝑧))
78 fvex 6903 . . . . . . . . . 10 (1st ‘(𝑥𝑧)) ∈ V
7914fvmpt2 7008 . . . . . . . . . 10 ((𝑧𝐶 ∧ (1st ‘(𝑥𝑧)) ∈ V) → (𝐷𝑧) = (1st ‘(𝑥𝑧)))
8078, 79mpan2 687 . . . . . . . . 9 (𝑧𝐶 → (𝐷𝑧) = (1st ‘(𝑥𝑧)))
8177, 80sylan9eq 2790 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ((1st𝑦)‘𝑧) = (1st ‘(𝑥𝑧)))
8270fveq2d 6894 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd𝑦) = (2nd ‘⟨𝐷, 𝑅⟩))
83 op2ndg 7990 . . . . . . . . . . . 12 ((𝐷 ∈ (𝐴m 𝐶) ∧ 𝑅 ∈ (𝐵m 𝐶)) → (2nd ‘⟨𝐷, 𝑅⟩) = 𝑅)
8472, 73, 83syl2anc 582 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd ‘⟨𝐷, 𝑅⟩) = 𝑅)
8582, 84eqtrd 2770 . . . . . . . . . 10 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd𝑦) = 𝑅)
8685fveq1d 6892 . . . . . . . . 9 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → ((2nd𝑦)‘𝑧) = (𝑅𝑧))
87 fvex 6903 . . . . . . . . . 10 (2nd ‘(𝑥𝑧)) ∈ V
8820fvmpt2 7008 . . . . . . . . . 10 ((𝑧𝐶 ∧ (2nd ‘(𝑥𝑧)) ∈ V) → (𝑅𝑧) = (2nd ‘(𝑥𝑧)))
8987, 88mpan2 687 . . . . . . . . 9 (𝑧𝐶 → (𝑅𝑧) = (2nd ‘(𝑥𝑧)))
9086, 89sylan9eq 2790 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ((2nd𝑦)‘𝑧) = (2nd ‘(𝑥𝑧)))
9181, 90opeq12d 4880 . . . . . . 7 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9268ffvelcdmda 7085 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
93 1st2nd2 8016 . . . . . . . 8 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (𝑥𝑧) = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9492, 93syl 17 . . . . . . 7 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → (𝑥𝑧) = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9591, 94eqtr4d 2773 . . . . . 6 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ = (𝑥𝑧))
9695mpteq2dva 5247 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = (𝑧𝐶 ↦ (𝑥𝑧)))
9734, 96eqtrid 2782 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑆 = (𝑧𝐶 ↦ (𝑥𝑧)))
9869, 97eqtr4d 2773 . . 3 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 = 𝑆)
9966, 98impbida 797 . 2 ((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) → (𝑥 = 𝑆𝑦 = ⟨𝐷, 𝑅⟩))
1001, 4, 24, 37, 99en3i 8989 1 ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴m 𝐶) × (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  cop 4633   class class class wbr 5147  cmpt 5230   × cxp 5673  wf 6538  cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  m cmap 8822  cen 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-en 8942
This theorem is referenced by:  xpmapen  9147
  Copyright terms: Public domain W3C validator