MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpmapenlem Structured version   Visualization version   GIF version

Theorem xpmapenlem 9114
Description: Lemma for xpmapen 9115. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1 𝐴 ∈ V
xpmapen.2 𝐵 ∈ V
xpmapen.3 𝐶 ∈ V
xpmapenlem.4 𝐷 = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
xpmapenlem.5 𝑅 = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
xpmapenlem.6 𝑆 = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
Assertion
Ref Expression
xpmapenlem ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴m 𝐶) × (𝐵m 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑦,𝐷,𝑧   𝑦,𝑅,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑦)

Proof of Theorem xpmapenlem
StepHypRef Expression
1 ovex 7423 . 2 ((𝐴 × 𝐵) ↑m 𝐶) ∈ V
2 ovex 7423 . . 3 (𝐴m 𝐶) ∈ V
3 ovex 7423 . . 3 (𝐵m 𝐶) ∈ V
42, 3xpex 7732 . 2 ((𝐴m 𝐶) × (𝐵m 𝐶)) ∈ V
5 xpmapen.1 . . . . . . . . 9 𝐴 ∈ V
6 xpmapen.2 . . . . . . . . 9 𝐵 ∈ V
75, 6xpex 7732 . . . . . . . 8 (𝐴 × 𝐵) ∈ V
8 xpmapen.3 . . . . . . . 8 𝐶 ∈ V
97, 8elmap 8847 . . . . . . 7 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ↔ 𝑥:𝐶⟶(𝐴 × 𝐵))
10 ffvelcdm 7056 . . . . . . 7 ((𝑥:𝐶⟶(𝐴 × 𝐵) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
119, 10sylanb 581 . . . . . 6 ((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
12 xp1st 8003 . . . . . 6 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (1st ‘(𝑥𝑧)) ∈ 𝐴)
1311, 12syl 17 . . . . 5 ((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) ∈ 𝐴)
14 xpmapenlem.4 . . . . 5 𝐷 = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
1513, 14fmptd 7089 . . . 4 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → 𝐷:𝐶𝐴)
165, 8elmap 8847 . . . 4 (𝐷 ∈ (𝐴m 𝐶) ↔ 𝐷:𝐶𝐴)
1715, 16sylibr 234 . . 3 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → 𝐷 ∈ (𝐴m 𝐶))
18 xp2nd 8004 . . . . . 6 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (2nd ‘(𝑥𝑧)) ∈ 𝐵)
1911, 18syl 17 . . . . 5 ((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) ∈ 𝐵)
20 xpmapenlem.5 . . . . 5 𝑅 = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
2119, 20fmptd 7089 . . . 4 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → 𝑅:𝐶𝐵)
226, 8elmap 8847 . . . 4 (𝑅 ∈ (𝐵m 𝐶) ↔ 𝑅:𝐶𝐵)
2321, 22sylibr 234 . . 3 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → 𝑅 ∈ (𝐵m 𝐶))
2417, 23opelxpd 5680 . 2 (𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) → ⟨𝐷, 𝑅⟩ ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)))
25 xp1st 8003 . . . . . . 7 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (1st𝑦) ∈ (𝐴m 𝐶))
265, 8elmap 8847 . . . . . . 7 ((1st𝑦) ∈ (𝐴m 𝐶) ↔ (1st𝑦):𝐶𝐴)
2725, 26sylib 218 . . . . . 6 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (1st𝑦):𝐶𝐴)
2827ffvelcdmda 7059 . . . . 5 ((𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) ∧ 𝑧𝐶) → ((1st𝑦)‘𝑧) ∈ 𝐴)
29 xp2nd 8004 . . . . . . 7 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (2nd𝑦) ∈ (𝐵m 𝐶))
306, 8elmap 8847 . . . . . . 7 ((2nd𝑦) ∈ (𝐵m 𝐶) ↔ (2nd𝑦):𝐶𝐵)
3129, 30sylib 218 . . . . . 6 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (2nd𝑦):𝐶𝐵)
3231ffvelcdmda 7059 . . . . 5 ((𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) ∧ 𝑧𝐶) → ((2nd𝑦)‘𝑧) ∈ 𝐵)
3328, 32opelxpd 5680 . . . 4 ((𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ (𝐴 × 𝐵))
34 xpmapenlem.6 . . . 4 𝑆 = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
3533, 34fmptd 7089 . . 3 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → 𝑆:𝐶⟶(𝐴 × 𝐵))
367, 8elmap 8847 . . 3 (𝑆 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ↔ 𝑆:𝐶⟶(𝐴 × 𝐵))
3735, 36sylibr 234 . 2 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → 𝑆 ∈ ((𝐴 × 𝐵) ↑m 𝐶))
38 1st2nd2 8010 . . . . 5 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3938ad2antlr 727 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
4027feqmptd 6932 . . . . . . 7 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (1st𝑦) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
4140ad2antlr 727 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (1st𝑦) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
42 simplr 768 . . . . . . . . . . . 12 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → 𝑥 = 𝑆)
4342fveq1d 6863 . . . . . . . . . . 11 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑥𝑧) = (𝑆𝑧))
44 opex 5427 . . . . . . . . . . . . 13 ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ V
4534fvmpt2 6982 . . . . . . . . . . . . 13 ((𝑧𝐶 ∧ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ V) → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4644, 45mpan2 691 . . . . . . . . . . . 12 (𝑧𝐶 → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4746adantl 481 . . . . . . . . . . 11 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4843, 47eqtrd 2765 . . . . . . . . . 10 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑥𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4948fveq2d 6865 . . . . . . . . 9 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) = (1st ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩))
50 fvex 6874 . . . . . . . . . 10 ((1st𝑦)‘𝑧) ∈ V
51 fvex 6874 . . . . . . . . . 10 ((2nd𝑦)‘𝑧) ∈ V
5250, 51op1st 7979 . . . . . . . . 9 (1st ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = ((1st𝑦)‘𝑧)
5349, 52eqtrdi 2781 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) = ((1st𝑦)‘𝑧))
5453mpteq2dva 5203 . . . . . . 7 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (𝑧𝐶 ↦ (1st ‘(𝑥𝑧))) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
5514, 54eqtrid 2777 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → 𝐷 = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
5641, 55eqtr4d 2768 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (1st𝑦) = 𝐷)
5731feqmptd 6932 . . . . . . 7 (𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶)) → (2nd𝑦) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
5857ad2antlr 727 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (2nd𝑦) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
5948fveq2d 6865 . . . . . . . . 9 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) = (2nd ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩))
6050, 51op2nd 7980 . . . . . . . . 9 (2nd ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = ((2nd𝑦)‘𝑧)
6159, 60eqtrdi 2781 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) = ((2nd𝑦)‘𝑧))
6261mpteq2dva 5203 . . . . . . 7 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧))) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
6320, 62eqtrid 2777 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → 𝑅 = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
6458, 63eqtr4d 2768 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → (2nd𝑦) = 𝑅)
6556, 64opeq12d 4848 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝐷, 𝑅⟩)
6639, 65eqtrd 2765 . . 3 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑥 = 𝑆) → 𝑦 = ⟨𝐷, 𝑅⟩)
67 simpll 766 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶))
6867, 9sylib 218 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥:𝐶⟶(𝐴 × 𝐵))
6968feqmptd 6932 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 = (𝑧𝐶 ↦ (𝑥𝑧)))
70 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑦 = ⟨𝐷, 𝑅⟩)
7170fveq2d 6865 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st𝑦) = (1st ‘⟨𝐷, 𝑅⟩))
7217ad2antrr 726 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝐷 ∈ (𝐴m 𝐶))
7323ad2antrr 726 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑅 ∈ (𝐵m 𝐶))
74 op1stg 7983 . . . . . . . . . . . 12 ((𝐷 ∈ (𝐴m 𝐶) ∧ 𝑅 ∈ (𝐵m 𝐶)) → (1st ‘⟨𝐷, 𝑅⟩) = 𝐷)
7572, 73, 74syl2anc 584 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st ‘⟨𝐷, 𝑅⟩) = 𝐷)
7671, 75eqtrd 2765 . . . . . . . . . 10 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st𝑦) = 𝐷)
7776fveq1d 6863 . . . . . . . . 9 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → ((1st𝑦)‘𝑧) = (𝐷𝑧))
78 fvex 6874 . . . . . . . . . 10 (1st ‘(𝑥𝑧)) ∈ V
7914fvmpt2 6982 . . . . . . . . . 10 ((𝑧𝐶 ∧ (1st ‘(𝑥𝑧)) ∈ V) → (𝐷𝑧) = (1st ‘(𝑥𝑧)))
8078, 79mpan2 691 . . . . . . . . 9 (𝑧𝐶 → (𝐷𝑧) = (1st ‘(𝑥𝑧)))
8177, 80sylan9eq 2785 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ((1st𝑦)‘𝑧) = (1st ‘(𝑥𝑧)))
8270fveq2d 6865 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd𝑦) = (2nd ‘⟨𝐷, 𝑅⟩))
83 op2ndg 7984 . . . . . . . . . . . 12 ((𝐷 ∈ (𝐴m 𝐶) ∧ 𝑅 ∈ (𝐵m 𝐶)) → (2nd ‘⟨𝐷, 𝑅⟩) = 𝑅)
8472, 73, 83syl2anc 584 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd ‘⟨𝐷, 𝑅⟩) = 𝑅)
8582, 84eqtrd 2765 . . . . . . . . . 10 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd𝑦) = 𝑅)
8685fveq1d 6863 . . . . . . . . 9 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → ((2nd𝑦)‘𝑧) = (𝑅𝑧))
87 fvex 6874 . . . . . . . . . 10 (2nd ‘(𝑥𝑧)) ∈ V
8820fvmpt2 6982 . . . . . . . . . 10 ((𝑧𝐶 ∧ (2nd ‘(𝑥𝑧)) ∈ V) → (𝑅𝑧) = (2nd ‘(𝑥𝑧)))
8987, 88mpan2 691 . . . . . . . . 9 (𝑧𝐶 → (𝑅𝑧) = (2nd ‘(𝑥𝑧)))
9086, 89sylan9eq 2785 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ((2nd𝑦)‘𝑧) = (2nd ‘(𝑥𝑧)))
9181, 90opeq12d 4848 . . . . . . 7 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9268ffvelcdmda 7059 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
93 1st2nd2 8010 . . . . . . . 8 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (𝑥𝑧) = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9492, 93syl 17 . . . . . . 7 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → (𝑥𝑧) = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9591, 94eqtr4d 2768 . . . . . 6 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ = (𝑥𝑧))
9695mpteq2dva 5203 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = (𝑧𝐶 ↦ (𝑥𝑧)))
9734, 96eqtrid 2777 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑆 = (𝑧𝐶 ↦ (𝑥𝑧)))
9869, 97eqtr4d 2768 . . 3 (((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 = 𝑆)
9966, 98impbida 800 . 2 ((𝑥 ∈ ((𝐴 × 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ ((𝐴m 𝐶) × (𝐵m 𝐶))) → (𝑥 = 𝑆𝑦 = ⟨𝐷, 𝑅⟩))
1001, 4, 24, 37, 99en3i 8965 1 ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴m 𝐶) × (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  m cmap 8802  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-en 8922
This theorem is referenced by:  xpmapen  9115
  Copyright terms: Public domain W3C validator