| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr3i | Structured version Visualization version GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entr3i.1 | ⊢ 𝐴 ≈ 𝐵 |
| entr3i.2 | ⊢ 𝐴 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entr3i | ⊢ 𝐵 ≈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entr3i.1 | . . 3 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | 1 | ensymi 8921 | . 2 ⊢ 𝐵 ≈ 𝐴 |
| 3 | entr3i.2 | . 2 ⊢ 𝐴 ≈ 𝐶 | |
| 4 | 2, 3 | entri 8925 | 1 ⊢ 𝐵 ≈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5086 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-er 8617 df-en 8865 |
| This theorem is referenced by: cpnnen 16133 |
| Copyright terms: Public domain | W3C validator |