MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entr3i Structured version   Visualization version   GIF version

Theorem entr3i 9005
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entr3i.1 𝐴𝐵
entr3i.2 𝐴𝐶
Assertion
Ref Expression
entr3i 𝐵𝐶

Proof of Theorem entr3i
StepHypRef Expression
1 entr3i.1 . . 3 𝐴𝐵
21ensymi 8999 . 2 𝐵𝐴
3 entr3i.2 . 2 𝐴𝐶
42, 3entri 9003 1 𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5141  cen 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-er 8702  df-en 8939
This theorem is referenced by:  cpnnen  16177
  Copyright terms: Public domain W3C validator