| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr2i | Structured version Visualization version GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entr2i.1 | ⊢ 𝐴 ≈ 𝐵 |
| entr2i.2 | ⊢ 𝐵 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entr2i | ⊢ 𝐶 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entr2i.1 | . . 3 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | entr2i.2 | . . 3 ⊢ 𝐵 ≈ 𝐶 | |
| 3 | 1, 2 | entri 8956 | . 2 ⊢ 𝐴 ≈ 𝐶 |
| 4 | 3 | ensymi 8952 | 1 ⊢ 𝐶 ≈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-er 8648 df-en 8896 |
| This theorem is referenced by: nnenom 13921 bitsf1 16392 odinf 19469 re2ndc 24665 opnmblALT 25480 mbfimaopnlem 25532 poimirlem32 37619 |
| Copyright terms: Public domain | W3C validator |