MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entr2i Structured version   Visualization version   GIF version

Theorem entr2i 8983
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entr2i.1 𝐴𝐵
entr2i.2 𝐵𝐶
Assertion
Ref Expression
entr2i 𝐶𝐴

Proof of Theorem entr2i
StepHypRef Expression
1 entr2i.1 . . 3 𝐴𝐵
2 entr2i.2 . . 3 𝐵𝐶
31, 2entri 8982 . 2 𝐴𝐶
43ensymi 8978 1 𝐶𝐴
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5110  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-er 8674  df-en 8922
This theorem is referenced by:  nnenom  13952  bitsf1  16423  odinf  19500  re2ndc  24696  opnmblALT  25511  mbfimaopnlem  25563  poimirlem32  37653
  Copyright terms: Public domain W3C validator