MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entr2i Structured version   Visualization version   GIF version

Theorem entr2i 8683
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entr2i.1 𝐴𝐵
entr2i.2 𝐵𝐶
Assertion
Ref Expression
entr2i 𝐶𝐴

Proof of Theorem entr2i
StepHypRef Expression
1 entr2i.1 . . 3 𝐴𝐵
2 entr2i.2 . . 3 𝐵𝐶
31, 2entri 8682 . 2 𝐴𝐶
43ensymi 8678 1 𝐶𝐴
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5053  cen 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-er 8391  df-en 8627
This theorem is referenced by:  nnenom  13553  bitsf1  16005  odinf  18954  re2ndc  23698  opnmblALT  24500  mbfimaopnlem  24552  poimirlem32  35546
  Copyright terms: Public domain W3C validator