| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr2i | Structured version Visualization version GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entr2i.1 | ⊢ 𝐴 ≈ 𝐵 |
| entr2i.2 | ⊢ 𝐵 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entr2i | ⊢ 𝐶 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entr2i.1 | . . 3 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | entr2i.2 | . . 3 ⊢ 𝐵 ≈ 𝐶 | |
| 3 | 1, 2 | entri 9022 | . 2 ⊢ 𝐴 ≈ 𝐶 |
| 4 | 3 | ensymi 9018 | 1 ⊢ 𝐶 ≈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-er 8719 df-en 8960 |
| This theorem is referenced by: nnenom 13998 bitsf1 16465 odinf 19544 re2ndc 24740 opnmblALT 25556 mbfimaopnlem 25608 poimirlem32 37676 |
| Copyright terms: Public domain | W3C validator |