| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entri | Structured version Visualization version GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entri.1 | ⊢ 𝐴 ≈ 𝐵 |
| entri.2 | ⊢ 𝐵 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entri | ⊢ 𝐴 ≈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entri.1 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | entri.2 | . 2 ⊢ 𝐵 ≈ 𝐶 | |
| 3 | entr 8931 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝐴 ≈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5092 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-er 8625 df-en 8873 |
| This theorem is referenced by: entr2i 8934 entr3i 8935 entr4i 8936 infxpenc2 9916 cfpwsdom 10478 hashxplem 14340 xpnnen 16120 qnnen 16122 rpnnen 16136 rexpen 16137 odhash 19453 cygctb 19771 met2ndci 24408 re2ndc 24687 iscmet3 25191 dyadmbl 25499 opnmblALT 25502 mbfimaopnlem 25554 aannenlem3 26236 mblfinlem1 37641 heiborlem3 37797 heibor 37805 irrapx1 42805 zenom 45034 qenom 45345 |
| Copyright terms: Public domain | W3C validator |