| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entri | Structured version Visualization version GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entri.1 | ⊢ 𝐴 ≈ 𝐵 |
| entri.2 | ⊢ 𝐵 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entri | ⊢ 𝐴 ≈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entri.1 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | entri.2 | . 2 ⊢ 𝐵 ≈ 𝐶 | |
| 3 | entr 8954 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝐴 ≈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-er 8648 df-en 8896 |
| This theorem is referenced by: entr2i 8957 entr3i 8958 entr4i 8959 infxpenc2 9951 cfpwsdom 10513 hashxplem 14374 xpnnen 16155 qnnen 16157 rpnnen 16171 rexpen 16172 odhash 19480 cygctb 19798 met2ndci 24386 re2ndc 24665 iscmet3 25169 dyadmbl 25477 opnmblALT 25480 mbfimaopnlem 25532 aannenlem3 26214 mblfinlem1 37624 heiborlem3 37780 heibor 37788 irrapx1 42789 zenom 45019 qenom 45330 |
| Copyright terms: Public domain | W3C validator |