Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > entri | Structured version Visualization version GIF version |
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
entri.1 | ⊢ 𝐴 ≈ 𝐵 |
entri.2 | ⊢ 𝐵 ≈ 𝐶 |
Ref | Expression |
---|---|
entri | ⊢ 𝐴 ≈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entri.1 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
2 | entri.2 | . 2 ⊢ 𝐵 ≈ 𝐶 | |
3 | entr 8747 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ 𝐴 ≈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5070 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-er 8456 df-en 8692 |
This theorem is referenced by: entr2i 8750 entr3i 8751 entr4i 8752 infxpenc2 9709 cfpwsdom 10271 hashxplem 14076 xpnnen 15848 qnnen 15850 rpnnen 15864 rexpen 15865 odhash 19094 cygctb 19408 met2ndci 23584 re2ndc 23870 iscmet3 24362 dyadmbl 24669 opnmblALT 24672 mbfimaopnlem 24724 aannenlem3 25395 mblfinlem1 35741 heiborlem3 35898 heibor 35906 irrapx1 40566 zenom 42489 qenom 42790 |
Copyright terms: Public domain | W3C validator |