Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > entri | Structured version Visualization version GIF version |
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
entri.1 | ⊢ 𝐴 ≈ 𝐵 |
entri.2 | ⊢ 𝐵 ≈ 𝐶 |
Ref | Expression |
---|---|
entri | ⊢ 𝐴 ≈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entri.1 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
2 | entri.2 | . 2 ⊢ 𝐵 ≈ 𝐶 | |
3 | entr 8792 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ 𝐴 ≈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5074 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-er 8498 df-en 8734 |
This theorem is referenced by: entr2i 8795 entr3i 8796 entr4i 8797 infxpenc2 9778 cfpwsdom 10340 hashxplem 14148 xpnnen 15920 qnnen 15922 rpnnen 15936 rexpen 15937 odhash 19179 cygctb 19493 met2ndci 23678 re2ndc 23964 iscmet3 24457 dyadmbl 24764 opnmblALT 24767 mbfimaopnlem 24819 aannenlem3 25490 mblfinlem1 35814 heiborlem3 35971 heibor 35979 irrapx1 40650 zenom 42600 qenom 42900 |
Copyright terms: Public domain | W3C validator |