MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entri Structured version   Visualization version   GIF version

Theorem entri 8979
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entri.1 𝐴𝐵
entri.2 𝐵𝐶
Assertion
Ref Expression
entri 𝐴𝐶

Proof of Theorem entri
StepHypRef Expression
1 entri.1 . 2 𝐴𝐵
2 entri.2 . 2 𝐵𝐶
3 entr 8977 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3mp2an 692 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5107  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-er 8671  df-en 8919
This theorem is referenced by:  entr2i  8980  entr3i  8981  entr4i  8982  infxpenc2  9975  cfpwsdom  10537  hashxplem  14398  xpnnen  16179  qnnen  16181  rpnnen  16195  rexpen  16196  odhash  19504  cygctb  19822  met2ndci  24410  re2ndc  24689  iscmet3  25193  dyadmbl  25501  opnmblALT  25504  mbfimaopnlem  25556  aannenlem3  26238  mblfinlem1  37651  heiborlem3  37807  heibor  37815  irrapx1  42816  zenom  45046  qenom  45357
  Copyright terms: Public domain W3C validator