| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entri | Structured version Visualization version GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entri.1 | ⊢ 𝐴 ≈ 𝐵 |
| entri.2 | ⊢ 𝐵 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entri | ⊢ 𝐴 ≈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entri.1 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | entri.2 | . 2 ⊢ 𝐵 ≈ 𝐶 | |
| 3 | entr 8928 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝐴 ≈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5089 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-er 8622 df-en 8870 |
| This theorem is referenced by: entr2i 8931 entr3i 8932 entr4i 8933 infxpenc2 9913 cfpwsdom 10475 hashxplem 14340 xpnnen 16120 qnnen 16122 rpnnen 16136 rexpen 16137 odhash 19486 cygctb 19804 met2ndci 24437 re2ndc 24716 iscmet3 25220 dyadmbl 25528 opnmblALT 25531 mbfimaopnlem 25583 aannenlem3 26265 mblfinlem1 37707 heiborlem3 37863 heibor 37871 irrapx1 42931 zenom 45159 qenom 45470 |
| Copyright terms: Public domain | W3C validator |