MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entri Structured version   Visualization version   GIF version

Theorem entri 8933
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entri.1 𝐴𝐵
entri.2 𝐵𝐶
Assertion
Ref Expression
entri 𝐴𝐶

Proof of Theorem entri
StepHypRef Expression
1 entri.1 . 2 𝐴𝐵
2 entri.2 . 2 𝐵𝐶
3 entr 8931 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3mp2an 692 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5092  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-er 8625  df-en 8873
This theorem is referenced by:  entr2i  8934  entr3i  8935  entr4i  8936  infxpenc2  9916  cfpwsdom  10478  hashxplem  14340  xpnnen  16120  qnnen  16122  rpnnen  16136  rexpen  16137  odhash  19453  cygctb  19771  met2ndci  24408  re2ndc  24687  iscmet3  25191  dyadmbl  25499  opnmblALT  25502  mbfimaopnlem  25554  aannenlem3  26236  mblfinlem1  37641  heiborlem3  37797  heibor  37805  irrapx1  42805  zenom  45034  qenom  45345
  Copyright terms: Public domain W3C validator