| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entri | Structured version Visualization version GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entri.1 | ⊢ 𝐴 ≈ 𝐵 |
| entri.2 | ⊢ 𝐵 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entri | ⊢ 𝐴 ≈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entri.1 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | entri.2 | . 2 ⊢ 𝐵 ≈ 𝐶 | |
| 3 | entr 8977 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝐴 ≈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-er 8671 df-en 8919 |
| This theorem is referenced by: entr2i 8980 entr3i 8981 entr4i 8982 infxpenc2 9975 cfpwsdom 10537 hashxplem 14398 xpnnen 16179 qnnen 16181 rpnnen 16195 rexpen 16196 odhash 19504 cygctb 19822 met2ndci 24410 re2ndc 24689 iscmet3 25193 dyadmbl 25501 opnmblALT 25504 mbfimaopnlem 25556 aannenlem3 26238 mblfinlem1 37651 heiborlem3 37807 heibor 37815 irrapx1 42816 zenom 45046 qenom 45357 |
| Copyright terms: Public domain | W3C validator |