| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entri | Structured version Visualization version GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entri.1 | ⊢ 𝐴 ≈ 𝐵 |
| entri.2 | ⊢ 𝐵 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entri | ⊢ 𝐴 ≈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entri.1 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | entri.2 | . 2 ⊢ 𝐵 ≈ 𝐶 | |
| 3 | entr 8980 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝐴 ≈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 |
| This theorem is referenced by: entr2i 8983 entr3i 8984 entr4i 8985 infxpenc2 9982 cfpwsdom 10544 hashxplem 14405 xpnnen 16186 qnnen 16188 rpnnen 16202 rexpen 16203 odhash 19511 cygctb 19829 met2ndci 24417 re2ndc 24696 iscmet3 25200 dyadmbl 25508 opnmblALT 25511 mbfimaopnlem 25563 aannenlem3 26245 mblfinlem1 37658 heiborlem3 37814 heibor 37822 irrapx1 42823 zenom 45053 qenom 45364 |
| Copyright terms: Public domain | W3C validator |