| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymi | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| ensymi.2 | ⊢ 𝐴 ≈ 𝐵 |
| Ref | Expression |
|---|---|
| ensymi | ⊢ 𝐵 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymi.2 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | ensym 8932 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5093 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-er 8628 df-en 8876 |
| This theorem is referenced by: entr2i 8938 entr3i 8939 entr4i 8940 pm54.43 9901 infxpenlem 9911 unsnen 10451 cfpwsdom 10482 tskinf 10667 inar1 10673 gruina 10716 uzenom 13873 znnen 16123 qnnen 16124 rexpen 16139 rucALT 16141 aleph1re 16156 aleph1irr 16157 unben 16823 ex-chn2 18546 1stcfb 23361 2ndcredom 23366 hauspwdom 23417 met1stc 24437 ovolctb2 25421 ovolfi 25423 ovoliunlem3 25433 uniiccdif 25507 dyadmbl 25529 mbfimaopnlem 25584 aannenlem3 26266 f1ocnt 32787 dmvlsiga 34163 sigapildsys 34196 omssubadd 34334 carsgclctunlem3 34354 pellex 42953 tr3dom 43646 nnfoctb 45170 nnf1oxpnn 45317 ioonct 45662 caragenunicl 46647 rrx2xpreen 48845 aacllem 49927 |
| Copyright terms: Public domain | W3C validator |