| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymi | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| ensymi.2 | ⊢ 𝐴 ≈ 𝐵 |
| Ref | Expression |
|---|---|
| ensymi | ⊢ 𝐵 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymi.2 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | ensym 8935 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-er 8632 df-en 8880 |
| This theorem is referenced by: entr2i 8941 entr3i 8942 entr4i 8943 pm54.43 9916 infxpenlem 9926 unsnen 10466 cfpwsdom 10497 tskinf 10682 inar1 10688 gruina 10731 uzenom 13889 znnen 16139 qnnen 16140 rexpen 16155 rucALT 16157 aleph1re 16172 aleph1irr 16173 unben 16839 1stcfb 23348 2ndcredom 23353 hauspwdom 23404 met1stc 24425 ovolctb2 25409 ovolfi 25411 ovoliunlem3 25421 uniiccdif 25495 dyadmbl 25517 mbfimaopnlem 25572 aannenlem3 26254 f1ocnt 32758 dmvlsiga 34095 sigapildsys 34128 omssubadd 34267 carsgclctunlem3 34287 pellex 42808 tr3dom 43501 nnfoctb 45026 nnf1oxpnn 45173 ioonct 45519 caragenunicl 46506 rrx2xpreen 48705 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |