| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymi | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| ensymi.2 | ⊢ 𝐴 ≈ 𝐵 |
| Ref | Expression |
|---|---|
| ensymi | ⊢ 𝐵 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymi.2 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | ensym 9017 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-er 8719 df-en 8960 |
| This theorem is referenced by: entr2i 9023 entr3i 9024 entr4i 9025 pm54.43 10015 infxpenlem 10027 unsnen 10567 cfpwsdom 10598 tskinf 10783 inar1 10789 gruina 10832 uzenom 13982 znnen 16230 qnnen 16231 rexpen 16246 rucALT 16248 aleph1re 16263 aleph1irr 16264 unben 16929 1stcfb 23383 2ndcredom 23388 hauspwdom 23439 met1stc 24460 ovolctb2 25445 ovolfi 25447 ovoliunlem3 25457 uniiccdif 25531 dyadmbl 25553 mbfimaopnlem 25608 aannenlem3 26290 f1ocnt 32779 dmvlsiga 34160 sigapildsys 34193 omssubadd 34332 carsgclctunlem3 34352 pellex 42858 tr3dom 43552 nnfoctb 45072 nnf1oxpnn 45219 ioonct 45566 caragenunicl 46553 rrx2xpreen 48699 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |