![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymi | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
ensymi.2 | ⊢ 𝐴 ≈ 𝐵 |
Ref | Expression |
---|---|
ensymi | ⊢ 𝐵 ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymi.2 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
2 | ensym 9063 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5166 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-er 8763 df-en 9004 |
This theorem is referenced by: entr2i 9069 entr3i 9070 entr4i 9071 pm54.43 10070 infxpenlem 10082 unsnen 10622 cfpwsdom 10653 tskinf 10838 inar1 10844 gruina 10887 uzenom 14015 znnen 16260 qnnen 16261 rexpen 16276 rucALT 16278 aleph1re 16293 aleph1irr 16294 unben 16956 1stcfb 23474 2ndcredom 23479 hauspwdom 23530 met1stc 24555 ovolctb2 25546 ovolfi 25548 ovoliunlem3 25558 uniiccdif 25632 dyadmbl 25654 mbfimaopnlem 25709 aannenlem3 26390 f1ocnt 32807 dmvlsiga 34093 sigapildsys 34126 omssubadd 34265 carsgclctunlem3 34285 pellex 42791 tr3dom 43490 nnfoctb 44949 nnf1oxpnn 45102 ioonct 45455 caragenunicl 46445 rrx2xpreen 48453 aacllem 48895 |
Copyright terms: Public domain | W3C validator |