Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensymi | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
ensymi.2 | ⊢ 𝐴 ≈ 𝐵 |
Ref | Expression |
---|---|
ensymi | ⊢ 𝐵 ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymi.2 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
2 | ensym 8789 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5074 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-er 8498 df-en 8734 |
This theorem is referenced by: entr2i 8795 entr3i 8796 entr4i 8797 pm54.43 9759 infxpenlem 9769 unsnen 10309 cfpwsdom 10340 tskinf 10525 inar1 10531 gruina 10574 uzenom 13684 znnen 15921 qnnen 15922 rexpen 15937 rucALT 15939 aleph1re 15954 aleph1irr 15955 unben 16610 1stcfb 22596 2ndcredom 22601 hauspwdom 22652 met1stc 23677 ovolctb2 24656 ovolfi 24658 ovoliunlem3 24668 uniiccdif 24742 dyadmbl 24764 mbfimaopnlem 24819 aannenlem3 25490 f1ocnt 31123 dmvlsiga 32097 sigapildsys 32130 omssubadd 32267 carsgclctunlem3 32287 pellex 40657 tr3dom 41135 nnfoctb 42595 nnf1oxpnn 42734 ioonct 43075 caragenunicl 44062 rrx2xpreen 46065 aacllem 46505 |
Copyright terms: Public domain | W3C validator |