| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymi | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| ensymi.2 | ⊢ 𝐴 ≈ 𝐵 |
| Ref | Expression |
|---|---|
| ensymi | ⊢ 𝐵 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymi.2 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | ensym 8974 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-er 8671 df-en 8919 |
| This theorem is referenced by: entr2i 8980 entr3i 8981 entr4i 8982 pm54.43 9954 infxpenlem 9966 unsnen 10506 cfpwsdom 10537 tskinf 10722 inar1 10728 gruina 10771 uzenom 13929 znnen 16180 qnnen 16181 rexpen 16196 rucALT 16198 aleph1re 16213 aleph1irr 16214 unben 16880 1stcfb 23332 2ndcredom 23337 hauspwdom 23388 met1stc 24409 ovolctb2 25393 ovolfi 25395 ovoliunlem3 25405 uniiccdif 25479 dyadmbl 25501 mbfimaopnlem 25556 aannenlem3 26238 f1ocnt 32725 dmvlsiga 34119 sigapildsys 34152 omssubadd 34291 carsgclctunlem3 34311 pellex 42823 tr3dom 43517 nnfoctb 45042 nnf1oxpnn 45189 ioonct 45535 caragenunicl 46522 rrx2xpreen 48708 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |