|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fonex | Structured version Visualization version GIF version | ||
| Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| fonex.1 | ⊢ 𝐵 ∉ V | 
| fonex.2 | ⊢ 𝐹:𝐴–onto→𝐵 | 
| Ref | Expression | 
|---|---|
| fonex | ⊢ 𝐴 ∉ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fonex.1 | . . . 4 ⊢ 𝐵 ∉ V | |
| 2 | 1 | neli 3047 | . . 3 ⊢ ¬ 𝐵 ∈ V | 
| 3 | fonex.2 | . . . . . 6 ⊢ 𝐹:𝐴–onto→𝐵 | |
| 4 | fofun 6820 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ Fun 𝐹 | 
| 6 | funrnex 7979 | . . . . 5 ⊢ (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 7 | 5, 6 | mpi 20 | . . . 4 ⊢ (dom 𝐹 ∈ V → ran 𝐹 ∈ V) | 
| 8 | fofn 6821 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝐹 Fn 𝐴 | 
| 10 | 9 | fndmi 6671 | . . . . 5 ⊢ dom 𝐹 = 𝐴 | 
| 11 | 10 | eleq1i 2831 | . . . 4 ⊢ (dom 𝐹 ∈ V ↔ 𝐴 ∈ V) | 
| 12 | forn 6822 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ ran 𝐹 = 𝐵 | 
| 14 | 13 | eleq1i 2831 | . . . 4 ⊢ (ran 𝐹 ∈ V ↔ 𝐵 ∈ V) | 
| 15 | 7, 11, 14 | 3imtr3i 291 | . . 3 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) | 
| 16 | 2, 15 | mto 197 | . 2 ⊢ ¬ 𝐴 ∈ V | 
| 17 | 16 | nelir 3048 | 1 ⊢ 𝐴 ∉ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∉ wnel 3045 Vcvv 3479 dom cdm 5684 ran crn 5685 Fun wfun 6554 Fn wfn 6555 –onto→wfo 6558 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 | 
| This theorem is referenced by: posnex 48884 prsnex 48885 termcnex 49228 | 
| Copyright terms: Public domain | W3C validator |