| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fonex | Structured version Visualization version GIF version | ||
| Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| fonex.1 | ⊢ 𝐵 ∉ V |
| fonex.2 | ⊢ 𝐹:𝐴–onto→𝐵 |
| Ref | Expression |
|---|---|
| fonex | ⊢ 𝐴 ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fonex.1 | . . . 4 ⊢ 𝐵 ∉ V | |
| 2 | 1 | neli 3039 | . . 3 ⊢ ¬ 𝐵 ∈ V |
| 3 | fonex.2 | . . . . . 6 ⊢ 𝐹:𝐴–onto→𝐵 | |
| 4 | fofun 6796 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ Fun 𝐹 |
| 6 | funrnex 7957 | . . . . 5 ⊢ (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 7 | 5, 6 | mpi 20 | . . . 4 ⊢ (dom 𝐹 ∈ V → ran 𝐹 ∈ V) |
| 8 | fofn 6797 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝐹 Fn 𝐴 |
| 10 | 9 | fndmi 6647 | . . . . 5 ⊢ dom 𝐹 = 𝐴 |
| 11 | 10 | eleq1i 2826 | . . . 4 ⊢ (dom 𝐹 ∈ V ↔ 𝐴 ∈ V) |
| 12 | forn 6798 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ ran 𝐹 = 𝐵 |
| 14 | 13 | eleq1i 2826 | . . . 4 ⊢ (ran 𝐹 ∈ V ↔ 𝐵 ∈ V) |
| 15 | 7, 11, 14 | 3imtr3i 291 | . . 3 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 16 | 2, 15 | mto 197 | . 2 ⊢ ¬ 𝐴 ∈ V |
| 17 | 16 | nelir 3040 | 1 ⊢ 𝐴 ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∉ wnel 3037 Vcvv 3464 dom cdm 5659 ran crn 5660 Fun wfun 6530 Fn wfn 6531 –onto→wfo 6534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: posnex 48921 prsnex 48922 termcnex 49420 |
| Copyright terms: Public domain | W3C validator |