Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fonex Structured version   Visualization version   GIF version

Theorem fonex 48774
Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
fonex.1 𝐵 ∉ V
fonex.2 𝐹:𝐴onto𝐵
Assertion
Ref Expression
fonex 𝐴 ∉ V

Proof of Theorem fonex
StepHypRef Expression
1 fonex.1 . . . 4 𝐵 ∉ V
21neli 3047 . . 3 ¬ 𝐵 ∈ V
3 fonex.2 . . . . . 6 𝐹:𝐴onto𝐵
4 fofun 6820 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
53, 4ax-mp 5 . . . . 5 Fun 𝐹
6 funrnex 7979 . . . . 5 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
75, 6mpi 20 . . . 4 (dom 𝐹 ∈ V → ran 𝐹 ∈ V)
8 fofn 6821 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
93, 8ax-mp 5 . . . . . 6 𝐹 Fn 𝐴
109fndmi 6671 . . . . 5 dom 𝐹 = 𝐴
1110eleq1i 2831 . . . 4 (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)
12 forn 6822 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
133, 12ax-mp 5 . . . . 5 ran 𝐹 = 𝐵
1413eleq1i 2831 . . . 4 (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)
157, 11, 143imtr3i 291 . . 3 (𝐴 ∈ V → 𝐵 ∈ V)
162, 15mto 197 . 2 ¬ 𝐴 ∈ V
1716nelir 3048 1 𝐴 ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  wnel 3045  Vcvv 3479  dom cdm 5684  ran crn 5685  Fun wfun 6554   Fn wfn 6555  ontowfo 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568
This theorem is referenced by:  posnex  48884  prsnex  48885  termcnex  49228
  Copyright terms: Public domain W3C validator