Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fonex Structured version   Visualization version   GIF version

Theorem fonex 48991
Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
fonex.1 𝐵 ∉ V
fonex.2 𝐹:𝐴onto𝐵
Assertion
Ref Expression
fonex 𝐴 ∉ V

Proof of Theorem fonex
StepHypRef Expression
1 fonex.1 . . . 4 𝐵 ∉ V
21neli 3035 . . 3 ¬ 𝐵 ∈ V
3 fonex.2 . . . . . 6 𝐹:𝐴onto𝐵
4 fofun 6741 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
53, 4ax-mp 5 . . . . 5 Fun 𝐹
6 funrnex 7892 . . . . 5 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
75, 6mpi 20 . . . 4 (dom 𝐹 ∈ V → ran 𝐹 ∈ V)
8 fofn 6742 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
93, 8ax-mp 5 . . . . . 6 𝐹 Fn 𝐴
109fndmi 6590 . . . . 5 dom 𝐹 = 𝐴
1110eleq1i 2824 . . . 4 (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)
12 forn 6743 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
133, 12ax-mp 5 . . . . 5 ran 𝐹 = 𝐵
1413eleq1i 2824 . . . 4 (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)
157, 11, 143imtr3i 291 . . 3 (𝐴 ∈ V → 𝐵 ∈ V)
162, 15mto 197 . 2 ¬ 𝐴 ∈ V
1716nelir 3036 1 𝐴 ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wnel 3033  Vcvv 3437  dom cdm 5619  ran crn 5620  Fun wfun 6480   Fn wfn 6481  ontowfo 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  posnex  49104  prsnex  49105  termcnex  49701
  Copyright terms: Public domain W3C validator