Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fonex Structured version   Visualization version   GIF version

Theorem fonex 48852
Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
fonex.1 𝐵 ∉ V
fonex.2 𝐹:𝐴onto𝐵
Assertion
Ref Expression
fonex 𝐴 ∉ V

Proof of Theorem fonex
StepHypRef Expression
1 fonex.1 . . . 4 𝐵 ∉ V
21neli 3031 . . 3 ¬ 𝐵 ∈ V
3 fonex.2 . . . . . 6 𝐹:𝐴onto𝐵
4 fofun 6773 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
53, 4ax-mp 5 . . . . 5 Fun 𝐹
6 funrnex 7932 . . . . 5 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
75, 6mpi 20 . . . 4 (dom 𝐹 ∈ V → ran 𝐹 ∈ V)
8 fofn 6774 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
93, 8ax-mp 5 . . . . . 6 𝐹 Fn 𝐴
109fndmi 6622 . . . . 5 dom 𝐹 = 𝐴
1110eleq1i 2819 . . . 4 (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)
12 forn 6775 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
133, 12ax-mp 5 . . . . 5 ran 𝐹 = 𝐵
1413eleq1i 2819 . . . 4 (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)
157, 11, 143imtr3i 291 . . 3 (𝐴 ∈ V → 𝐵 ∈ V)
162, 15mto 197 . 2 ¬ 𝐴 ∈ V
1716nelir 3032 1 𝐴 ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wnel 3029  Vcvv 3447  dom cdm 5638  ran crn 5639  Fun wfun 6505   Fn wfn 6506  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  posnex  48965  prsnex  48966  termcnex  49562
  Copyright terms: Public domain W3C validator