| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fonex | Structured version Visualization version GIF version | ||
| Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| fonex.1 | ⊢ 𝐵 ∉ V |
| fonex.2 | ⊢ 𝐹:𝐴–onto→𝐵 |
| Ref | Expression |
|---|---|
| fonex | ⊢ 𝐴 ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fonex.1 | . . . 4 ⊢ 𝐵 ∉ V | |
| 2 | 1 | neli 3037 | . . 3 ⊢ ¬ 𝐵 ∈ V |
| 3 | fonex.2 | . . . . . 6 ⊢ 𝐹:𝐴–onto→𝐵 | |
| 4 | fofun 6788 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ Fun 𝐹 |
| 6 | funrnex 7947 | . . . . 5 ⊢ (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 7 | 5, 6 | mpi 20 | . . . 4 ⊢ (dom 𝐹 ∈ V → ran 𝐹 ∈ V) |
| 8 | fofn 6789 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝐹 Fn 𝐴 |
| 10 | 9 | fndmi 6639 | . . . . 5 ⊢ dom 𝐹 = 𝐴 |
| 11 | 10 | eleq1i 2824 | . . . 4 ⊢ (dom 𝐹 ∈ V ↔ 𝐴 ∈ V) |
| 12 | forn 6790 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ ran 𝐹 = 𝐵 |
| 14 | 13 | eleq1i 2824 | . . . 4 ⊢ (ran 𝐹 ∈ V ↔ 𝐵 ∈ V) |
| 15 | 7, 11, 14 | 3imtr3i 291 | . . 3 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 16 | 2, 15 | mto 197 | . 2 ⊢ ¬ 𝐴 ∈ V |
| 17 | 16 | nelir 3038 | 1 ⊢ 𝐴 ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∉ wnel 3035 Vcvv 3457 dom cdm 5652 ran crn 5653 Fun wfun 6522 Fn wfn 6523 –onto→wfo 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 |
| This theorem is referenced by: posnex 48848 prsnex 48849 termcnex 49314 |
| Copyright terms: Public domain | W3C validator |