Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fonex Structured version   Visualization version   GIF version

Theorem fonex 48897
Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
fonex.1 𝐵 ∉ V
fonex.2 𝐹:𝐴onto𝐵
Assertion
Ref Expression
fonex 𝐴 ∉ V

Proof of Theorem fonex
StepHypRef Expression
1 fonex.1 . . . 4 𝐵 ∉ V
21neli 3034 . . 3 ¬ 𝐵 ∈ V
3 fonex.2 . . . . . 6 𝐹:𝐴onto𝐵
4 fofun 6736 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
53, 4ax-mp 5 . . . . 5 Fun 𝐹
6 funrnex 7886 . . . . 5 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
75, 6mpi 20 . . . 4 (dom 𝐹 ∈ V → ran 𝐹 ∈ V)
8 fofn 6737 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
93, 8ax-mp 5 . . . . . 6 𝐹 Fn 𝐴
109fndmi 6585 . . . . 5 dom 𝐹 = 𝐴
1110eleq1i 2822 . . . 4 (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)
12 forn 6738 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
133, 12ax-mp 5 . . . . 5 ran 𝐹 = 𝐵
1413eleq1i 2822 . . . 4 (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)
157, 11, 143imtr3i 291 . . 3 (𝐴 ∈ V → 𝐵 ∈ V)
162, 15mto 197 . 2 ¬ 𝐴 ∈ V
1716nelir 3035 1 𝐴 ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wnel 3032  Vcvv 3436  dom cdm 5616  ran crn 5617  Fun wfun 6475   Fn wfn 6476  ontowfo 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  posnex  49010  prsnex  49011  termcnex  49607
  Copyright terms: Public domain W3C validator