Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fonex Structured version   Visualization version   GIF version

Theorem fonex 48736
Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
fonex.1 𝐵 ∉ V
fonex.2 𝐹:𝐴onto𝐵
Assertion
Ref Expression
fonex 𝐴 ∉ V

Proof of Theorem fonex
StepHypRef Expression
1 fonex.1 . . . 4 𝐵 ∉ V
21neli 3037 . . 3 ¬ 𝐵 ∈ V
3 fonex.2 . . . . . 6 𝐹:𝐴onto𝐵
4 fofun 6788 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
53, 4ax-mp 5 . . . . 5 Fun 𝐹
6 funrnex 7947 . . . . 5 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
75, 6mpi 20 . . . 4 (dom 𝐹 ∈ V → ran 𝐹 ∈ V)
8 fofn 6789 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
93, 8ax-mp 5 . . . . . 6 𝐹 Fn 𝐴
109fndmi 6639 . . . . 5 dom 𝐹 = 𝐴
1110eleq1i 2824 . . . 4 (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)
12 forn 6790 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
133, 12ax-mp 5 . . . . 5 ran 𝐹 = 𝐵
1413eleq1i 2824 . . . 4 (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)
157, 11, 143imtr3i 291 . . 3 (𝐴 ∈ V → 𝐵 ∈ V)
162, 15mto 197 . 2 ¬ 𝐴 ∈ V
1716nelir 3038 1 𝐴 ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  wnel 3035  Vcvv 3457  dom cdm 5652  ran crn 5653  Fun wfun 6522   Fn wfn 6523  ontowfo 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536
This theorem is referenced by:  posnex  48848  prsnex  48849  termcnex  49314
  Copyright terms: Public domain W3C validator