| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fonex | Structured version Visualization version GIF version | ||
| Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| fonex.1 | ⊢ 𝐵 ∉ V |
| fonex.2 | ⊢ 𝐹:𝐴–onto→𝐵 |
| Ref | Expression |
|---|---|
| fonex | ⊢ 𝐴 ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fonex.1 | . . . 4 ⊢ 𝐵 ∉ V | |
| 2 | 1 | neli 3034 | . . 3 ⊢ ¬ 𝐵 ∈ V |
| 3 | fonex.2 | . . . . . 6 ⊢ 𝐹:𝐴–onto→𝐵 | |
| 4 | fofun 6736 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ Fun 𝐹 |
| 6 | funrnex 7886 | . . . . 5 ⊢ (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 7 | 5, 6 | mpi 20 | . . . 4 ⊢ (dom 𝐹 ∈ V → ran 𝐹 ∈ V) |
| 8 | fofn 6737 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ 𝐹 Fn 𝐴 |
| 10 | 9 | fndmi 6585 | . . . . 5 ⊢ dom 𝐹 = 𝐴 |
| 11 | 10 | eleq1i 2822 | . . . 4 ⊢ (dom 𝐹 ∈ V ↔ 𝐴 ∈ V) |
| 12 | forn 6738 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 13 | 3, 12 | ax-mp 5 | . . . . 5 ⊢ ran 𝐹 = 𝐵 |
| 14 | 13 | eleq1i 2822 | . . . 4 ⊢ (ran 𝐹 ∈ V ↔ 𝐵 ∈ V) |
| 15 | 7, 11, 14 | 3imtr3i 291 | . . 3 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 16 | 2, 15 | mto 197 | . 2 ⊢ ¬ 𝐴 ∈ V |
| 17 | 16 | nelir 3035 | 1 ⊢ 𝐴 ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 Vcvv 3436 dom cdm 5616 ran crn 5617 Fun wfun 6475 Fn wfn 6476 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: posnex 49010 prsnex 49011 termcnex 49607 |
| Copyright terms: Public domain | W3C validator |