Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofdiag Structured version   Visualization version   GIF version

Theorem prcofdiag 49505
Description: A diagonal functor post-composed by a pre-composition functor is another diagonal functor. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
prcofdiag.l 𝐿 = (𝐶Δfunc𝐷)
prcofdiag.m 𝑀 = (𝐶Δfunc𝐸)
prcofdiag.f (𝜑𝐹 ∈ (𝐸 Func 𝐷))
prcofdiag.c (𝜑𝐶 ∈ Cat)
prcofdiag.g (𝜑 → (⟨𝐷, 𝐶⟩ −∘F 𝐹) = 𝐺)
Assertion
Ref Expression
prcofdiag (𝜑 → (𝐺func 𝐿) = 𝑀)

Proof of Theorem prcofdiag
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2731 . . . . . 6 (Base‘(𝐸 FuncCat 𝐶)) = (Base‘(𝐸 FuncCat 𝐶))
3 prcofdiag.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
4 prcofdiag.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
5 prcofdiag.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐸 Func 𝐷))
65func1st2nd 49187 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐸 Func 𝐷)(2nd𝐹))
76funcrcl3 49191 . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
8 eqid 2731 . . . . . . . . 9 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
93, 4, 7, 8diagcl 18147 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
10 prcofdiag.g . . . . . . . . 9 (𝜑 → (⟨𝐷, 𝐶⟩ −∘F 𝐹) = 𝐺)
11 eqid 2731 . . . . . . . . . 10 (𝐸 FuncCat 𝐶) = (𝐸 FuncCat 𝐶)
128, 4, 11, 5prcoffunca 49497 . . . . . . . . 9 (𝜑 → (⟨𝐷, 𝐶⟩ −∘F 𝐹) ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶)))
1310, 12eqeltrrd 2832 . . . . . . . 8 (𝜑𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶)))
149, 13cofucl 17795 . . . . . . 7 (𝜑 → (𝐺func 𝐿) ∈ (𝐶 Func (𝐸 FuncCat 𝐶)))
1514func1st2nd 49187 . . . . . 6 (𝜑 → (1st ‘(𝐺func 𝐿))(𝐶 Func (𝐸 FuncCat 𝐶))(2nd ‘(𝐺func 𝐿)))
161, 2, 15funcf1 17773 . . . . 5 (𝜑 → (1st ‘(𝐺func 𝐿)):(Base‘𝐶)⟶(Base‘(𝐸 FuncCat 𝐶)))
1716ffnd 6652 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐿)) Fn (Base‘𝐶))
18 prcofdiag.m . . . . . . . 8 𝑀 = (𝐶Δfunc𝐸)
196funcrcl2 49190 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
2018, 4, 19, 11diagcl 18147 . . . . . . 7 (𝜑𝑀 ∈ (𝐶 Func (𝐸 FuncCat 𝐶)))
2120func1st2nd 49187 . . . . . 6 (𝜑 → (1st𝑀)(𝐶 Func (𝐸 FuncCat 𝐶))(2nd𝑀))
221, 2, 21funcf1 17773 . . . . 5 (𝜑 → (1st𝑀):(Base‘𝐶)⟶(Base‘(𝐸 FuncCat 𝐶)))
2322ffnd 6652 . . . 4 (𝜑 → (1st𝑀) Fn (Base‘𝐶))
249adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
2513adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶)))
26 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
271, 24, 25, 26cofu1 17791 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺func 𝐿))‘𝑥) = ((1st𝐺)‘((1st𝐿)‘𝑥)))
284adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
297adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
30 eqid 2731 . . . . . . 7 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
313, 28, 29, 1, 26, 30diag1cl 18148 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐿)‘𝑥) ∈ (𝐷 Func 𝐶))
3210fveq2d 6826 . . . . . . 7 (𝜑 → (1st ‘(⟨𝐷, 𝐶⟩ −∘F 𝐹)) = (1st𝐺))
3332adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘(⟨𝐷, 𝐶⟩ −∘F 𝐹)) = (1st𝐺))
3431, 33prcof1 49499 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘((1st𝐿)‘𝑥)) = (((1st𝐿)‘𝑥) ∘func 𝐹))
355adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐸 Func 𝐷))
363, 18, 35, 28, 1, 26prcofdiag1 49504 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐿)‘𝑥) ∘func 𝐹) = ((1st𝑀)‘𝑥))
3727, 34, 363eqtrd 2770 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺func 𝐿))‘𝑥) = ((1st𝑀)‘𝑥))
3817, 23, 37eqfnfvd 6967 . . 3 (𝜑 → (1st ‘(𝐺func 𝐿)) = (1st𝑀))
391, 15funcfn2 17776 . . . 4 (𝜑 → (2nd ‘(𝐺func 𝐿)) Fn ((Base‘𝐶) × (Base‘𝐶)))
401, 21funcfn2 17776 . . . 4 (𝜑 → (2nd𝑀) Fn ((Base‘𝐶) × (Base‘𝐶)))
41 eqid 2731 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
42 eqid 2731 . . . . . . 7 (Hom ‘(𝐸 FuncCat 𝐶)) = (Hom ‘(𝐸 FuncCat 𝐶))
4315adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝐺func 𝐿))(𝐶 Func (𝐸 FuncCat 𝐶))(2nd ‘(𝐺func 𝐿)))
44 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
45 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
461, 41, 42, 43, 44, 45funcf2 17775 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐿))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘(𝐺func 𝐿))‘𝑥)(Hom ‘(𝐸 FuncCat 𝐶))((1st ‘(𝐺func 𝐿))‘𝑦)))
4746ffnd 6652 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐿))𝑦) Fn (𝑥(Hom ‘𝐶)𝑦))
4821adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝑀)(𝐶 Func (𝐸 FuncCat 𝐶))(2nd𝑀))
491, 41, 42, 48, 44, 45funcf2 17775 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑀)‘𝑥)(Hom ‘(𝐸 FuncCat 𝐶))((1st𝑀)‘𝑦)))
5049ffnd 6652 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑀)𝑦) Fn (𝑥(Hom ‘𝐶)𝑦))
51 eqid 2731 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
52 eqid 2731 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
535ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐸 Func 𝐷))
5453func1st2nd 49187 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st𝐹)(𝐸 Func 𝐷)(2nd𝐹))
5551, 52, 54funcf1 17773 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st𝐹):(Base‘𝐸)⟶(Base‘𝐷))
56 xpco2 48967 . . . . . . 7 ((1st𝐹):(Base‘𝐸)⟶(Base‘𝐷) → (((Base‘𝐷) × {𝑓}) ∘ (1st𝐹)) = ((Base‘𝐸) × {𝑓}))
5755, 56syl 17 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((Base‘𝐷) × {𝑓}) ∘ (1st𝐹)) = ((Base‘𝐸) × {𝑓}))
589ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
5913ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶)))
6044adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
6145adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
62 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
631, 58, 59, 60, 61, 41, 62cofu2 17793 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺func 𝐿))𝑦)‘𝑓) = ((((1st𝐿)‘𝑥)(2nd𝐺)((1st𝐿)‘𝑦))‘((𝑥(2nd𝐿)𝑦)‘𝑓)))
644ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
657ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
663, 1, 52, 41, 64, 65, 60, 61, 62diag2 18151 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐿)𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓}))
6766fveq2d 6826 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐿)‘𝑥)(2nd𝐺)((1st𝐿)‘𝑦))‘((𝑥(2nd𝐿)𝑦)‘𝑓)) = ((((1st𝐿)‘𝑥)(2nd𝐺)((1st𝐿)‘𝑦))‘((Base‘𝐷) × {𝑓})))
68 eqid 2731 . . . . . . . 8 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
693, 1, 52, 41, 64, 65, 60, 61, 62, 68diag2cl 18152 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Base‘𝐷) × {𝑓}) ∈ (((1st𝐿)‘𝑥)(𝐷 Nat 𝐶)((1st𝐿)‘𝑦)))
7010fveq2d 6826 . . . . . . . . 9 (𝜑 → (2nd ‘(⟨𝐷, 𝐶⟩ −∘F 𝐹)) = (2nd𝐺))
7170ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘(⟨𝐷, 𝐶⟩ −∘F 𝐹)) = (2nd𝐺))
7268, 69, 71, 53prcof21a 49502 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐿)‘𝑥)(2nd𝐺)((1st𝐿)‘𝑦))‘((Base‘𝐷) × {𝑓})) = (((Base‘𝐷) × {𝑓}) ∘ (1st𝐹)))
7363, 67, 723eqtrd 2770 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺func 𝐿))𝑦)‘𝑓) = (((Base‘𝐷) × {𝑓}) ∘ (1st𝐹)))
7419ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐸 ∈ Cat)
7518, 1, 51, 41, 64, 74, 60, 61, 62diag2 18151 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((Base‘𝐸) × {𝑓}))
7657, 73, 753eqtr4d 2776 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺func 𝐿))𝑦)‘𝑓) = ((𝑥(2nd𝑀)𝑦)‘𝑓))
7747, 50, 76eqfnfvd 6967 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐿))𝑦) = (𝑥(2nd𝑀)𝑦))
7839, 40, 77eqfnovd 48976 . . 3 (𝜑 → (2nd ‘(𝐺func 𝐿)) = (2nd𝑀))
7938, 78opeq12d 4830 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐿)), (2nd ‘(𝐺func 𝐿))⟩ = ⟨(1st𝑀), (2nd𝑀)⟩)
80 relfunc 17769 . . 3 Rel (𝐶 Func (𝐸 FuncCat 𝐶))
81 1st2nd 7971 . . 3 ((Rel (𝐶 Func (𝐸 FuncCat 𝐶)) ∧ (𝐺func 𝐿) ∈ (𝐶 Func (𝐸 FuncCat 𝐶))) → (𝐺func 𝐿) = ⟨(1st ‘(𝐺func 𝐿)), (2nd ‘(𝐺func 𝐿))⟩)
8280, 14, 81sylancr 587 . 2 (𝜑 → (𝐺func 𝐿) = ⟨(1st ‘(𝐺func 𝐿)), (2nd ‘(𝐺func 𝐿))⟩)
83 1st2nd 7971 . . 3 ((Rel (𝐶 Func (𝐸 FuncCat 𝐶)) ∧ 𝑀 ∈ (𝐶 Func (𝐸 FuncCat 𝐶))) → 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
8480, 20, 83sylancr 587 . 2 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
8579, 82, 843eqtr4d 2776 1 (𝜑 → (𝐺func 𝐿) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4573  cop 4579   class class class wbr 5089   × cxp 5612  ccom 5618  Rel wrel 5619  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17120  Hom chom 17172  Catccat 17570   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   FuncCat cfuc 17852  Δfunccdiag 18118   −∘F cprcof 49484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-func 17765  df-cofu 17767  df-nat 17853  df-fuc 17854  df-xpc 18078  df-1stf 18079  df-curf 18120  df-diag 18122  df-swapf 49371  df-fuco 49428  df-prcof 49485
This theorem is referenced by:  lmdran  49782  cmdlan  49783
  Copyright terms: Public domain W3C validator