Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofdiag Structured version   Visualization version   GIF version

Theorem prcofdiag 49376
Description: A diagonal functor post-composed by a pre-composition functor is another diagonal functor. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
prcofdiag.l 𝐿 = (𝐶Δfunc𝐷)
prcofdiag.m 𝑀 = (𝐶Δfunc𝐸)
prcofdiag.f (𝜑𝐹 ∈ (𝐸 Func 𝐷))
prcofdiag.c (𝜑𝐶 ∈ Cat)
prcofdiag.g (𝜑 → (⟨𝐷, 𝐶⟩ −∘F 𝐹) = 𝐺)
Assertion
Ref Expression
prcofdiag (𝜑 → (𝐺func 𝐿) = 𝑀)

Proof of Theorem prcofdiag
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2729 . . . . . 6 (Base‘(𝐸 FuncCat 𝐶)) = (Base‘(𝐸 FuncCat 𝐶))
3 prcofdiag.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
4 prcofdiag.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
5 prcofdiag.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐸 Func 𝐷))
65func1st2nd 49058 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐸 Func 𝐷)(2nd𝐹))
76funcrcl3 49062 . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
8 eqid 2729 . . . . . . . . 9 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
93, 4, 7, 8diagcl 18182 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
10 prcofdiag.g . . . . . . . . 9 (𝜑 → (⟨𝐷, 𝐶⟩ −∘F 𝐹) = 𝐺)
11 eqid 2729 . . . . . . . . . 10 (𝐸 FuncCat 𝐶) = (𝐸 FuncCat 𝐶)
128, 4, 11, 5prcoffunca 49368 . . . . . . . . 9 (𝜑 → (⟨𝐷, 𝐶⟩ −∘F 𝐹) ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶)))
1310, 12eqeltrrd 2829 . . . . . . . 8 (𝜑𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶)))
149, 13cofucl 17830 . . . . . . 7 (𝜑 → (𝐺func 𝐿) ∈ (𝐶 Func (𝐸 FuncCat 𝐶)))
1514func1st2nd 49058 . . . . . 6 (𝜑 → (1st ‘(𝐺func 𝐿))(𝐶 Func (𝐸 FuncCat 𝐶))(2nd ‘(𝐺func 𝐿)))
161, 2, 15funcf1 17808 . . . . 5 (𝜑 → (1st ‘(𝐺func 𝐿)):(Base‘𝐶)⟶(Base‘(𝐸 FuncCat 𝐶)))
1716ffnd 6671 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐿)) Fn (Base‘𝐶))
18 prcofdiag.m . . . . . . . 8 𝑀 = (𝐶Δfunc𝐸)
196funcrcl2 49061 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
2018, 4, 19, 11diagcl 18182 . . . . . . 7 (𝜑𝑀 ∈ (𝐶 Func (𝐸 FuncCat 𝐶)))
2120func1st2nd 49058 . . . . . 6 (𝜑 → (1st𝑀)(𝐶 Func (𝐸 FuncCat 𝐶))(2nd𝑀))
221, 2, 21funcf1 17808 . . . . 5 (𝜑 → (1st𝑀):(Base‘𝐶)⟶(Base‘(𝐸 FuncCat 𝐶)))
2322ffnd 6671 . . . 4 (𝜑 → (1st𝑀) Fn (Base‘𝐶))
249adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
2513adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶)))
26 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
271, 24, 25, 26cofu1 17826 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺func 𝐿))‘𝑥) = ((1st𝐺)‘((1st𝐿)‘𝑥)))
284adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
297adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
30 eqid 2729 . . . . . . 7 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
313, 28, 29, 1, 26, 30diag1cl 18183 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐿)‘𝑥) ∈ (𝐷 Func 𝐶))
3210fveq2d 6844 . . . . . . 7 (𝜑 → (1st ‘(⟨𝐷, 𝐶⟩ −∘F 𝐹)) = (1st𝐺))
3332adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘(⟨𝐷, 𝐶⟩ −∘F 𝐹)) = (1st𝐺))
3431, 33prcof1 49370 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘((1st𝐿)‘𝑥)) = (((1st𝐿)‘𝑥) ∘func 𝐹))
355adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐸 Func 𝐷))
363, 18, 35, 28, 1, 26prcofdiag1 49375 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐿)‘𝑥) ∘func 𝐹) = ((1st𝑀)‘𝑥))
3727, 34, 363eqtrd 2768 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺func 𝐿))‘𝑥) = ((1st𝑀)‘𝑥))
3817, 23, 37eqfnfvd 6988 . . 3 (𝜑 → (1st ‘(𝐺func 𝐿)) = (1st𝑀))
391, 15funcfn2 17811 . . . 4 (𝜑 → (2nd ‘(𝐺func 𝐿)) Fn ((Base‘𝐶) × (Base‘𝐶)))
401, 21funcfn2 17811 . . . 4 (𝜑 → (2nd𝑀) Fn ((Base‘𝐶) × (Base‘𝐶)))
41 eqid 2729 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
42 eqid 2729 . . . . . . 7 (Hom ‘(𝐸 FuncCat 𝐶)) = (Hom ‘(𝐸 FuncCat 𝐶))
4315adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝐺func 𝐿))(𝐶 Func (𝐸 FuncCat 𝐶))(2nd ‘(𝐺func 𝐿)))
44 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
45 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
461, 41, 42, 43, 44, 45funcf2 17810 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐿))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘(𝐺func 𝐿))‘𝑥)(Hom ‘(𝐸 FuncCat 𝐶))((1st ‘(𝐺func 𝐿))‘𝑦)))
4746ffnd 6671 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐿))𝑦) Fn (𝑥(Hom ‘𝐶)𝑦))
4821adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝑀)(𝐶 Func (𝐸 FuncCat 𝐶))(2nd𝑀))
491, 41, 42, 48, 44, 45funcf2 17810 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑀)‘𝑥)(Hom ‘(𝐸 FuncCat 𝐶))((1st𝑀)‘𝑦)))
5049ffnd 6671 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑀)𝑦) Fn (𝑥(Hom ‘𝐶)𝑦))
51 eqid 2729 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
52 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
535ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐸 Func 𝐷))
5453func1st2nd 49058 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st𝐹)(𝐸 Func 𝐷)(2nd𝐹))
5551, 52, 54funcf1 17808 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st𝐹):(Base‘𝐸)⟶(Base‘𝐷))
56 xpco2 48838 . . . . . . 7 ((1st𝐹):(Base‘𝐸)⟶(Base‘𝐷) → (((Base‘𝐷) × {𝑓}) ∘ (1st𝐹)) = ((Base‘𝐸) × {𝑓}))
5755, 56syl 17 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((Base‘𝐷) × {𝑓}) ∘ (1st𝐹)) = ((Base‘𝐸) × {𝑓}))
589ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
5913ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶)))
6044adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
6145adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
62 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
631, 58, 59, 60, 61, 41, 62cofu2 17828 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺func 𝐿))𝑦)‘𝑓) = ((((1st𝐿)‘𝑥)(2nd𝐺)((1st𝐿)‘𝑦))‘((𝑥(2nd𝐿)𝑦)‘𝑓)))
644ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
657ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
663, 1, 52, 41, 64, 65, 60, 61, 62diag2 18186 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐿)𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓}))
6766fveq2d 6844 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐿)‘𝑥)(2nd𝐺)((1st𝐿)‘𝑦))‘((𝑥(2nd𝐿)𝑦)‘𝑓)) = ((((1st𝐿)‘𝑥)(2nd𝐺)((1st𝐿)‘𝑦))‘((Base‘𝐷) × {𝑓})))
68 eqid 2729 . . . . . . . 8 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
693, 1, 52, 41, 64, 65, 60, 61, 62, 68diag2cl 18187 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Base‘𝐷) × {𝑓}) ∈ (((1st𝐿)‘𝑥)(𝐷 Nat 𝐶)((1st𝐿)‘𝑦)))
7010fveq2d 6844 . . . . . . . . 9 (𝜑 → (2nd ‘(⟨𝐷, 𝐶⟩ −∘F 𝐹)) = (2nd𝐺))
7170ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘(⟨𝐷, 𝐶⟩ −∘F 𝐹)) = (2nd𝐺))
7268, 69, 71, 53prcof21a 49373 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐿)‘𝑥)(2nd𝐺)((1st𝐿)‘𝑦))‘((Base‘𝐷) × {𝑓})) = (((Base‘𝐷) × {𝑓}) ∘ (1st𝐹)))
7363, 67, 723eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺func 𝐿))𝑦)‘𝑓) = (((Base‘𝐷) × {𝑓}) ∘ (1st𝐹)))
7419ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐸 ∈ Cat)
7518, 1, 51, 41, 64, 74, 60, 61, 62diag2 18186 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((Base‘𝐸) × {𝑓}))
7657, 73, 753eqtr4d 2774 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺func 𝐿))𝑦)‘𝑓) = ((𝑥(2nd𝑀)𝑦)‘𝑓))
7747, 50, 76eqfnfvd 6988 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐿))𝑦) = (𝑥(2nd𝑀)𝑦))
7839, 40, 77eqfnovd 48847 . . 3 (𝜑 → (2nd ‘(𝐺func 𝐿)) = (2nd𝑀))
7938, 78opeq12d 4841 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐿)), (2nd ‘(𝐺func 𝐿))⟩ = ⟨(1st𝑀), (2nd𝑀)⟩)
80 relfunc 17804 . . 3 Rel (𝐶 Func (𝐸 FuncCat 𝐶))
81 1st2nd 7997 . . 3 ((Rel (𝐶 Func (𝐸 FuncCat 𝐶)) ∧ (𝐺func 𝐿) ∈ (𝐶 Func (𝐸 FuncCat 𝐶))) → (𝐺func 𝐿) = ⟨(1st ‘(𝐺func 𝐿)), (2nd ‘(𝐺func 𝐿))⟩)
8280, 14, 81sylancr 587 . 2 (𝜑 → (𝐺func 𝐿) = ⟨(1st ‘(𝐺func 𝐿)), (2nd ‘(𝐺func 𝐿))⟩)
83 1st2nd 7997 . . 3 ((Rel (𝐶 Func (𝐸 FuncCat 𝐶)) ∧ 𝑀 ∈ (𝐶 Func (𝐸 FuncCat 𝐶))) → 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
8480, 20, 83sylancr 587 . 2 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
8579, 82, 843eqtr4d 2774 1 (𝜑 → (𝐺func 𝐿) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  ccom 5635  Rel wrel 5636  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Catccat 17605   Func cfunc 17796  func ccofu 17798   Nat cnat 17886   FuncCat cfuc 17887  Δfunccdiag 18153   −∘F cprcof 49355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17609  df-cid 17610  df-func 17800  df-cofu 17802  df-nat 17888  df-fuc 17889  df-xpc 18113  df-1stf 18114  df-curf 18155  df-diag 18157  df-swapf 49242  df-fuco 49299  df-prcof 49356
This theorem is referenced by:  lmdran  49653  cmdlan  49654
  Copyright terms: Public domain W3C validator