| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2730 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 2 | | eqid 2730 |
. . . . . 6
⊢
(Base‘(𝐸
FuncCat 𝐶)) =
(Base‘(𝐸 FuncCat
𝐶)) |
| 3 | | prcofdiag.l |
. . . . . . . . 9
⊢ 𝐿 = (𝐶Δfunc𝐷) |
| 4 | | prcofdiag.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 5 | | prcofdiag.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (𝐸 Func 𝐷)) |
| 6 | 5 | func1st2nd 49055 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝐹)(𝐸 Func 𝐷)(2nd ‘𝐹)) |
| 7 | 6 | funcrcl3 49059 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | | eqid 2730 |
. . . . . . . . 9
⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) |
| 9 | 3, 4, 7, 8 | diagcl 18208 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 10 | | prcofdiag.g |
. . . . . . . . 9
⊢ (𝜑 → (〈𝐷, 𝐶〉 −∘F
𝐹) = 𝐺) |
| 11 | | eqid 2730 |
. . . . . . . . . 10
⊢ (𝐸 FuncCat 𝐶) = (𝐸 FuncCat 𝐶) |
| 12 | 8, 4, 11, 5 | prcoffunca 49365 |
. . . . . . . . 9
⊢ (𝜑 → (〈𝐷, 𝐶〉 −∘F
𝐹) ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶))) |
| 13 | 10, 12 | eqeltrrd 2830 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶))) |
| 14 | 9, 13 | cofucl 17856 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∘func 𝐿) ∈ (𝐶 Func (𝐸 FuncCat 𝐶))) |
| 15 | 14 | func1st2nd 49055 |
. . . . . 6
⊢ (𝜑 → (1st
‘(𝐺
∘func 𝐿))(𝐶 Func (𝐸 FuncCat 𝐶))(2nd ‘(𝐺 ∘func 𝐿))) |
| 16 | 1, 2, 15 | funcf1 17834 |
. . . . 5
⊢ (𝜑 → (1st
‘(𝐺
∘func 𝐿)):(Base‘𝐶)⟶(Base‘(𝐸 FuncCat 𝐶))) |
| 17 | 16 | ffnd 6691 |
. . . 4
⊢ (𝜑 → (1st
‘(𝐺
∘func 𝐿)) Fn (Base‘𝐶)) |
| 18 | | prcofdiag.m |
. . . . . . . 8
⊢ 𝑀 = (𝐶Δfunc𝐸) |
| 19 | 6 | funcrcl2 49058 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 20 | 18, 4, 19, 11 | diagcl 18208 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝐶 Func (𝐸 FuncCat 𝐶))) |
| 21 | 20 | func1st2nd 49055 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝑀)(𝐶 Func (𝐸 FuncCat 𝐶))(2nd ‘𝑀)) |
| 22 | 1, 2, 21 | funcf1 17834 |
. . . . 5
⊢ (𝜑 → (1st
‘𝑀):(Base‘𝐶)⟶(Base‘(𝐸 FuncCat 𝐶))) |
| 23 | 22 | ffnd 6691 |
. . . 4
⊢ (𝜑 → (1st
‘𝑀) Fn
(Base‘𝐶)) |
| 24 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 25 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶))) |
| 26 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 27 | 1, 24, 25, 26 | cofu1 17852 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺 ∘func
𝐿))‘𝑥) = ((1st
‘𝐺)‘((1st ‘𝐿)‘𝑥))) |
| 28 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
| 29 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
| 30 | | eqid 2730 |
. . . . . . 7
⊢
((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘𝑥) |
| 31 | 3, 28, 29, 1, 26, 30 | diag1cl 18209 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐿)‘𝑥) ∈ (𝐷 Func 𝐶)) |
| 32 | 10 | fveq2d 6864 |
. . . . . . 7
⊢ (𝜑 → (1st
‘(〈𝐷, 𝐶〉
−∘F 𝐹)) = (1st ‘𝐺)) |
| 33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st
‘(〈𝐷, 𝐶〉
−∘F 𝐹)) = (1st ‘𝐺)) |
| 34 | 31, 33 | prcof1 49367 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘((1st
‘𝐿)‘𝑥)) = (((1st
‘𝐿)‘𝑥) ∘func
𝐹)) |
| 35 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐸 Func 𝐷)) |
| 36 | 3, 18, 35, 28, 1, 26 | prcofdiag1 49372 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((1st ‘𝐿)‘𝑥) ∘func 𝐹) = ((1st
‘𝑀)‘𝑥)) |
| 37 | 27, 34, 36 | 3eqtrd 2769 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺 ∘func
𝐿))‘𝑥) = ((1st
‘𝑀)‘𝑥)) |
| 38 | 17, 23, 37 | eqfnfvd 7008 |
. . 3
⊢ (𝜑 → (1st
‘(𝐺
∘func 𝐿)) = (1st ‘𝑀)) |
| 39 | 1, 15 | funcfn2 17837 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝐺
∘func 𝐿)) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 40 | 1, 21 | funcfn2 17837 |
. . . 4
⊢ (𝜑 → (2nd
‘𝑀) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
| 41 | | eqid 2730 |
. . . . . . 7
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 42 | | eqid 2730 |
. . . . . . 7
⊢ (Hom
‘(𝐸 FuncCat 𝐶)) = (Hom ‘(𝐸 FuncCat 𝐶)) |
| 43 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝐺 ∘func
𝐿))(𝐶 Func (𝐸 FuncCat 𝐶))(2nd ‘(𝐺 ∘func 𝐿))) |
| 44 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
| 45 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
| 46 | 1, 41, 42, 43, 44, 45 | funcf2 17836 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺 ∘func 𝐿))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘(𝐺 ∘func
𝐿))‘𝑥)(Hom ‘(𝐸 FuncCat 𝐶))((1st ‘(𝐺 ∘func 𝐿))‘𝑦))) |
| 47 | 46 | ffnd 6691 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺 ∘func 𝐿))𝑦) Fn (𝑥(Hom ‘𝐶)𝑦)) |
| 48 | 21 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘𝑀)(𝐶 Func (𝐸 FuncCat 𝐶))(2nd ‘𝑀)) |
| 49 | 1, 41, 42, 48, 44, 45 | funcf2 17836 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝑀)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝑀)‘𝑥)(Hom ‘(𝐸 FuncCat 𝐶))((1st ‘𝑀)‘𝑦))) |
| 50 | 49 | ffnd 6691 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝑀)𝑦) Fn (𝑥(Hom ‘𝐶)𝑦)) |
| 51 | | eqid 2730 |
. . . . . . . 8
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 52 | | eqid 2730 |
. . . . . . . 8
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 53 | 5 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐸 Func 𝐷)) |
| 54 | 53 | func1st2nd 49055 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘𝐹)(𝐸 Func 𝐷)(2nd ‘𝐹)) |
| 55 | 51, 52, 54 | funcf1 17834 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘𝐹):(Base‘𝐸)⟶(Base‘𝐷)) |
| 56 | | xpco2 48835 |
. . . . . . 7
⊢
((1st ‘𝐹):(Base‘𝐸)⟶(Base‘𝐷) → (((Base‘𝐷) × {𝑓}) ∘ (1st ‘𝐹)) = ((Base‘𝐸) × {𝑓})) |
| 57 | 55, 56 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((Base‘𝐷) × {𝑓}) ∘ (1st ‘𝐹)) = ((Base‘𝐸) × {𝑓})) |
| 58 | 9 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 59 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐺 ∈ ((𝐷 FuncCat 𝐶) Func (𝐸 FuncCat 𝐶))) |
| 60 | 44 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶)) |
| 61 | 45 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶)) |
| 62 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 63 | 1, 58, 59, 60, 61, 41, 62 | cofu2 17854 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺 ∘func 𝐿))𝑦)‘𝑓) = ((((1st ‘𝐿)‘𝑥)(2nd ‘𝐺)((1st ‘𝐿)‘𝑦))‘((𝑥(2nd ‘𝐿)𝑦)‘𝑓))) |
| 64 | 4 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat) |
| 65 | 7 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat) |
| 66 | 3, 1, 52, 41, 64, 65, 60, 61, 62 | diag2 18212 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐿)𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓})) |
| 67 | 66 | fveq2d 6864 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st ‘𝐿)‘𝑥)(2nd ‘𝐺)((1st ‘𝐿)‘𝑦))‘((𝑥(2nd ‘𝐿)𝑦)‘𝑓)) = ((((1st ‘𝐿)‘𝑥)(2nd ‘𝐺)((1st ‘𝐿)‘𝑦))‘((Base‘𝐷) × {𝑓}))) |
| 68 | | eqid 2730 |
. . . . . . . 8
⊢ (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶) |
| 69 | 3, 1, 52, 41, 64, 65, 60, 61, 62, 68 | diag2cl 18213 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Base‘𝐷) × {𝑓}) ∈ (((1st ‘𝐿)‘𝑥)(𝐷 Nat 𝐶)((1st ‘𝐿)‘𝑦))) |
| 70 | 10 | fveq2d 6864 |
. . . . . . . . 9
⊢ (𝜑 → (2nd
‘(〈𝐷, 𝐶〉
−∘F 𝐹)) = (2nd ‘𝐺)) |
| 71 | 70 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘(〈𝐷, 𝐶〉 −∘F
𝐹)) = (2nd
‘𝐺)) |
| 72 | 68, 69, 71, 53 | prcof21a 49370 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st ‘𝐿)‘𝑥)(2nd ‘𝐺)((1st ‘𝐿)‘𝑦))‘((Base‘𝐷) × {𝑓})) = (((Base‘𝐷) × {𝑓}) ∘ (1st ‘𝐹))) |
| 73 | 63, 67, 72 | 3eqtrd 2769 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺 ∘func 𝐿))𝑦)‘𝑓) = (((Base‘𝐷) × {𝑓}) ∘ (1st ‘𝐹))) |
| 74 | 19 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐸 ∈ Cat) |
| 75 | 18, 1, 51, 41, 64, 74, 60, 61, 62 | diag2 18212 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝑀)𝑦)‘𝑓) = ((Base‘𝐸) × {𝑓})) |
| 76 | 57, 73, 75 | 3eqtr4d 2775 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(𝐺 ∘func 𝐿))𝑦)‘𝑓) = ((𝑥(2nd ‘𝑀)𝑦)‘𝑓)) |
| 77 | 47, 50, 76 | eqfnfvd 7008 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺 ∘func 𝐿))𝑦) = (𝑥(2nd ‘𝑀)𝑦)) |
| 78 | 39, 40, 77 | eqfnovd 48844 |
. . 3
⊢ (𝜑 → (2nd
‘(𝐺
∘func 𝐿)) = (2nd ‘𝑀)) |
| 79 | 38, 78 | opeq12d 4847 |
. 2
⊢ (𝜑 → 〈(1st
‘(𝐺
∘func 𝐿)), (2nd ‘(𝐺 ∘func
𝐿))〉 =
〈(1st ‘𝑀), (2nd ‘𝑀)〉) |
| 80 | | relfunc 17830 |
. . 3
⊢ Rel
(𝐶 Func (𝐸 FuncCat 𝐶)) |
| 81 | | 1st2nd 8020 |
. . 3
⊢ ((Rel
(𝐶 Func (𝐸 FuncCat 𝐶)) ∧ (𝐺 ∘func 𝐿) ∈ (𝐶 Func (𝐸 FuncCat 𝐶))) → (𝐺 ∘func 𝐿) = 〈(1st
‘(𝐺
∘func 𝐿)), (2nd ‘(𝐺 ∘func
𝐿))〉) |
| 82 | 80, 14, 81 | sylancr 587 |
. 2
⊢ (𝜑 → (𝐺 ∘func 𝐿) = 〈(1st
‘(𝐺
∘func 𝐿)), (2nd ‘(𝐺 ∘func
𝐿))〉) |
| 83 | | 1st2nd 8020 |
. . 3
⊢ ((Rel
(𝐶 Func (𝐸 FuncCat 𝐶)) ∧ 𝑀 ∈ (𝐶 Func (𝐸 FuncCat 𝐶))) → 𝑀 = 〈(1st ‘𝑀), (2nd ‘𝑀)〉) |
| 84 | 80, 20, 83 | sylancr 587 |
. 2
⊢ (𝜑 → 𝑀 = 〈(1st ‘𝑀), (2nd ‘𝑀)〉) |
| 85 | 79, 82, 84 | 3eqtr4d 2775 |
1
⊢ (𝜑 → (𝐺 ∘func 𝐿) = 𝑀) |