Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofdiag1 Structured version   Visualization version   GIF version

Theorem prcofdiag1 49375
Description: A constant functor pre-composed by a functor is another constant functor. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
prcofdiag.l 𝐿 = (𝐶Δfunc𝐷)
prcofdiag.m 𝑀 = (𝐶Δfunc𝐸)
prcofdiag.f (𝜑𝐹 ∈ (𝐸 Func 𝐷))
prcofdiag.c (𝜑𝐶 ∈ Cat)
prcofdiag1.b 𝐵 = (Base‘𝐶)
prcofdiag1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
prcofdiag1 (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) = ((1st𝑀)‘𝑋))

Proof of Theorem prcofdiag1
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
2 prcofdiag1.b . . . . . 6 𝐵 = (Base‘𝐶)
3 prcofdiag.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐸 Func 𝐷))
4 prcofdiag.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
5 prcofdiag.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
63func1st2nd 49058 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐸 Func 𝐷)(2nd𝐹))
76funcrcl3 49062 . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
8 prcofdiag1.x . . . . . . . . 9 (𝜑𝑋𝐵)
9 eqid 2729 . . . . . . . . 9 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
104, 5, 7, 2, 8, 9diag1cl 18183 . . . . . . . 8 (𝜑 → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
113, 10cofucl 17830 . . . . . . 7 (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) ∈ (𝐸 Func 𝐶))
1211func1st2nd 49058 . . . . . 6 (𝜑 → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))(𝐸 Func 𝐶)(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹)))
131, 2, 12funcf1 17808 . . . . 5 (𝜑 → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)):(Base‘𝐸)⟶𝐵)
1413ffnd 6671 . . . 4 (𝜑 → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)) Fn (Base‘𝐸))
15 prcofdiag.m . . . . . . . 8 𝑀 = (𝐶Δfunc𝐸)
166funcrcl2 49061 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
17 eqid 2729 . . . . . . . 8 ((1st𝑀)‘𝑋) = ((1st𝑀)‘𝑋)
1815, 5, 16, 2, 8, 17diag1cl 18183 . . . . . . 7 (𝜑 → ((1st𝑀)‘𝑋) ∈ (𝐸 Func 𝐶))
1918func1st2nd 49058 . . . . . 6 (𝜑 → (1st ‘((1st𝑀)‘𝑋))(𝐸 Func 𝐶)(2nd ‘((1st𝑀)‘𝑋)))
201, 2, 19funcf1 17808 . . . . 5 (𝜑 → (1st ‘((1st𝑀)‘𝑋)):(Base‘𝐸)⟶𝐵)
2120ffnd 6671 . . . 4 (𝜑 → (1st ‘((1st𝑀)‘𝑋)) Fn (Base‘𝐸))
225adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝐶 ∈ Cat)
237adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝐷 ∈ Cat)
248adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑋𝐵)
25 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
261, 25, 6funcf1 17808 . . . . . . 7 (𝜑 → (1st𝐹):(Base‘𝐸)⟶(Base‘𝐷))
2726ffvelcdmda 7038 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
284, 22, 23, 2, 24, 9, 25, 27diag11 18184 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st ‘((1st𝐿)‘𝑋))‘((1st𝐹)‘𝑥)) = 𝑋)
293adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝐹 ∈ (𝐸 Func 𝐷))
3010adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
31 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝐸))
321, 29, 30, 31cofu1 17826 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))‘𝑥) = ((1st ‘((1st𝐿)‘𝑋))‘((1st𝐹)‘𝑥)))
3316adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝐸 ∈ Cat)
3415, 22, 33, 2, 24, 17, 1, 31diag11 18184 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st ‘((1st𝑀)‘𝑋))‘𝑥) = 𝑋)
3528, 32, 343eqtr4d 2774 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))‘𝑥) = ((1st ‘((1st𝑀)‘𝑋))‘𝑥))
3614, 21, 35eqfnfvd 6988 . . 3 (𝜑 → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)) = (1st ‘((1st𝑀)‘𝑋)))
371, 12funcfn2 17811 . . . 4 (𝜑 → (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹)) Fn ((Base‘𝐸) × (Base‘𝐸)))
381, 19funcfn2 17811 . . . 4 (𝜑 → (2nd ‘((1st𝑀)‘𝑋)) Fn ((Base‘𝐸) × (Base‘𝐸)))
39 eqid 2729 . . . . . . 7 (Hom ‘𝐸) = (Hom ‘𝐸)
40 eqid 2729 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
4112adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))(𝐸 Func 𝐶)(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹)))
42 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → 𝑥 ∈ (Base‘𝐸))
43 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → 𝑦 ∈ (Base‘𝐸))
441, 39, 40, 41, 42, 43funcf2 17810 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦):(𝑥(Hom ‘𝐸)𝑦)⟶(((1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))‘𝑥)(Hom ‘𝐶)((1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))‘𝑦)))
4544ffnd 6671 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦) Fn (𝑥(Hom ‘𝐸)𝑦))
4619adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (1st ‘((1st𝑀)‘𝑋))(𝐸 Func 𝐶)(2nd ‘((1st𝑀)‘𝑋)))
471, 39, 40, 46, 42, 43funcf2 17810 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦):(𝑥(Hom ‘𝐸)𝑦)⟶(((1st ‘((1st𝑀)‘𝑋))‘𝑥)(Hom ‘𝐶)((1st ‘((1st𝑀)‘𝑋))‘𝑦)))
4847ffnd 6671 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦) Fn (𝑥(Hom ‘𝐸)𝑦))
495ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝐶 ∈ Cat)
507ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝐷 ∈ Cat)
518ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝑋𝐵)
526ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → (1st𝐹)(𝐸 Func 𝐷)(2nd𝐹))
531, 25, 52funcf1 17808 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → (1st𝐹):(Base‘𝐸)⟶(Base‘𝐷))
5442adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝑥 ∈ (Base‘𝐸))
5553, 54ffvelcdmd 7039 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
56 eqid 2729 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
57 eqid 2729 . . . . . . 7 (Id‘𝐶) = (Id‘𝐶)
5843adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝑦 ∈ (Base‘𝐸))
5953, 58ffvelcdmd 7039 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
601, 39, 56, 52, 54, 58funcf2 17810 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐸)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
61 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦))
6260, 61ffvelcdmd 7039 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
634, 49, 50, 2, 51, 9, 25, 55, 56, 57, 59, 62diag12 18185 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((((1st𝐹)‘𝑥)(2nd ‘((1st𝐿)‘𝑋))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((Id‘𝐶)‘𝑋))
643ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝐹 ∈ (𝐸 Func 𝐷))
6510ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
661, 64, 65, 54, 58, 39, 61cofu2 17828 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd ‘((1st𝐿)‘𝑋))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6716ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝐸 ∈ Cat)
6815, 49, 67, 2, 51, 17, 1, 54, 39, 57, 58, 61diag12 18185 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦)‘𝑓) = ((Id‘𝐶)‘𝑋))
6963, 66, 683eqtr4d 2774 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦)‘𝑓) = ((𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦)‘𝑓))
7045, 48, 69eqfnfvd 6988 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦) = (𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦))
7137, 38, 70eqfnovd 48847 . . 3 (𝜑 → (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹)) = (2nd ‘((1st𝑀)‘𝑋)))
7236, 71opeq12d 4841 . 2 (𝜑 → ⟨(1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)), (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))⟩ = ⟨(1st ‘((1st𝑀)‘𝑋)), (2nd ‘((1st𝑀)‘𝑋))⟩)
73 relfunc 17804 . . 3 Rel (𝐸 Func 𝐶)
74 1st2nd 7997 . . 3 ((Rel (𝐸 Func 𝐶) ∧ (((1st𝐿)‘𝑋) ∘func 𝐹) ∈ (𝐸 Func 𝐶)) → (((1st𝐿)‘𝑋) ∘func 𝐹) = ⟨(1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)), (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))⟩)
7573, 11, 74sylancr 587 . 2 (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) = ⟨(1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)), (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))⟩)
76 1st2nd 7997 . . 3 ((Rel (𝐸 Func 𝐶) ∧ ((1st𝑀)‘𝑋) ∈ (𝐸 Func 𝐶)) → ((1st𝑀)‘𝑋) = ⟨(1st ‘((1st𝑀)‘𝑋)), (2nd ‘((1st𝑀)‘𝑋))⟩)
7773, 18, 76sylancr 587 . 2 (𝜑 → ((1st𝑀)‘𝑋) = ⟨(1st ‘((1st𝑀)‘𝑋)), (2nd ‘((1st𝑀)‘𝑋))⟩)
7872, 75, 773eqtr4d 2774 1 (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) = ((1st𝑀)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  Rel wrel 5636  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Catccat 17605  Idccid 17606   Func cfunc 17796  func ccofu 17798  Δfunccdiag 18153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17609  df-cid 17610  df-func 17800  df-cofu 17802  df-nat 17888  df-fuc 17889  df-xpc 18113  df-1stf 18114  df-curf 18155  df-diag 18157
This theorem is referenced by:  prcofdiag  49376
  Copyright terms: Public domain W3C validator