Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofdiag1 Structured version   Visualization version   GIF version

Theorem prcofdiag1 49372
Description: A constant functor pre-composed by a functor is another constant functor. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
prcofdiag.l 𝐿 = (𝐶Δfunc𝐷)
prcofdiag.m 𝑀 = (𝐶Δfunc𝐸)
prcofdiag.f (𝜑𝐹 ∈ (𝐸 Func 𝐷))
prcofdiag.c (𝜑𝐶 ∈ Cat)
prcofdiag1.b 𝐵 = (Base‘𝐶)
prcofdiag1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
prcofdiag1 (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) = ((1st𝑀)‘𝑋))

Proof of Theorem prcofdiag1
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
2 prcofdiag1.b . . . . . 6 𝐵 = (Base‘𝐶)
3 prcofdiag.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐸 Func 𝐷))
4 prcofdiag.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
5 prcofdiag.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
63func1st2nd 49055 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐸 Func 𝐷)(2nd𝐹))
76funcrcl3 49059 . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
8 prcofdiag1.x . . . . . . . . 9 (𝜑𝑋𝐵)
9 eqid 2730 . . . . . . . . 9 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
104, 5, 7, 2, 8, 9diag1cl 18209 . . . . . . . 8 (𝜑 → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
113, 10cofucl 17856 . . . . . . 7 (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) ∈ (𝐸 Func 𝐶))
1211func1st2nd 49055 . . . . . 6 (𝜑 → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))(𝐸 Func 𝐶)(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹)))
131, 2, 12funcf1 17834 . . . . 5 (𝜑 → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)):(Base‘𝐸)⟶𝐵)
1413ffnd 6691 . . . 4 (𝜑 → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)) Fn (Base‘𝐸))
15 prcofdiag.m . . . . . . . 8 𝑀 = (𝐶Δfunc𝐸)
166funcrcl2 49058 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
17 eqid 2730 . . . . . . . 8 ((1st𝑀)‘𝑋) = ((1st𝑀)‘𝑋)
1815, 5, 16, 2, 8, 17diag1cl 18209 . . . . . . 7 (𝜑 → ((1st𝑀)‘𝑋) ∈ (𝐸 Func 𝐶))
1918func1st2nd 49055 . . . . . 6 (𝜑 → (1st ‘((1st𝑀)‘𝑋))(𝐸 Func 𝐶)(2nd ‘((1st𝑀)‘𝑋)))
201, 2, 19funcf1 17834 . . . . 5 (𝜑 → (1st ‘((1st𝑀)‘𝑋)):(Base‘𝐸)⟶𝐵)
2120ffnd 6691 . . . 4 (𝜑 → (1st ‘((1st𝑀)‘𝑋)) Fn (Base‘𝐸))
225adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝐶 ∈ Cat)
237adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝐷 ∈ Cat)
248adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑋𝐵)
25 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
261, 25, 6funcf1 17834 . . . . . . 7 (𝜑 → (1st𝐹):(Base‘𝐸)⟶(Base‘𝐷))
2726ffvelcdmda 7058 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
284, 22, 23, 2, 24, 9, 25, 27diag11 18210 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st ‘((1st𝐿)‘𝑋))‘((1st𝐹)‘𝑥)) = 𝑋)
293adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝐹 ∈ (𝐸 Func 𝐷))
3010adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
31 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝐸))
321, 29, 30, 31cofu1 17852 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))‘𝑥) = ((1st ‘((1st𝐿)‘𝑋))‘((1st𝐹)‘𝑥)))
3316adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝐸 ∈ Cat)
3415, 22, 33, 2, 24, 17, 1, 31diag11 18210 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st ‘((1st𝑀)‘𝑋))‘𝑥) = 𝑋)
3528, 32, 343eqtr4d 2775 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐸)) → ((1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))‘𝑥) = ((1st ‘((1st𝑀)‘𝑋))‘𝑥))
3614, 21, 35eqfnfvd 7008 . . 3 (𝜑 → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)) = (1st ‘((1st𝑀)‘𝑋)))
371, 12funcfn2 17837 . . . 4 (𝜑 → (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹)) Fn ((Base‘𝐸) × (Base‘𝐸)))
381, 19funcfn2 17837 . . . 4 (𝜑 → (2nd ‘((1st𝑀)‘𝑋)) Fn ((Base‘𝐸) × (Base‘𝐸)))
39 eqid 2730 . . . . . . 7 (Hom ‘𝐸) = (Hom ‘𝐸)
40 eqid 2730 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
4112adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))(𝐸 Func 𝐶)(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹)))
42 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → 𝑥 ∈ (Base‘𝐸))
43 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → 𝑦 ∈ (Base‘𝐸))
441, 39, 40, 41, 42, 43funcf2 17836 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦):(𝑥(Hom ‘𝐸)𝑦)⟶(((1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))‘𝑥)(Hom ‘𝐶)((1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹))‘𝑦)))
4544ffnd 6691 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦) Fn (𝑥(Hom ‘𝐸)𝑦))
4619adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (1st ‘((1st𝑀)‘𝑋))(𝐸 Func 𝐶)(2nd ‘((1st𝑀)‘𝑋)))
471, 39, 40, 46, 42, 43funcf2 17836 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦):(𝑥(Hom ‘𝐸)𝑦)⟶(((1st ‘((1st𝑀)‘𝑋))‘𝑥)(Hom ‘𝐶)((1st ‘((1st𝑀)‘𝑋))‘𝑦)))
4847ffnd 6691 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦) Fn (𝑥(Hom ‘𝐸)𝑦))
495ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝐶 ∈ Cat)
507ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝐷 ∈ Cat)
518ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝑋𝐵)
526ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → (1st𝐹)(𝐸 Func 𝐷)(2nd𝐹))
531, 25, 52funcf1 17834 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → (1st𝐹):(Base‘𝐸)⟶(Base‘𝐷))
5442adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝑥 ∈ (Base‘𝐸))
5553, 54ffvelcdmd 7059 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
56 eqid 2730 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
57 eqid 2730 . . . . . . 7 (Id‘𝐶) = (Id‘𝐶)
5843adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝑦 ∈ (Base‘𝐸))
5953, 58ffvelcdmd 7059 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
601, 39, 56, 52, 54, 58funcf2 17836 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐸)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
61 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦))
6260, 61ffvelcdmd 7059 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
634, 49, 50, 2, 51, 9, 25, 55, 56, 57, 59, 62diag12 18211 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((((1st𝐹)‘𝑥)(2nd ‘((1st𝐿)‘𝑋))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((Id‘𝐶)‘𝑋))
643ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝐹 ∈ (𝐸 Func 𝐷))
6510ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
661, 64, 65, 54, 58, 39, 61cofu2 17854 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd ‘((1st𝐿)‘𝑋))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6716ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → 𝐸 ∈ Cat)
6815, 49, 67, 2, 51, 17, 1, 54, 39, 57, 58, 61diag12 18211 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦)‘𝑓) = ((Id‘𝐶)‘𝑋))
6963, 66, 683eqtr4d 2775 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐸)𝑦)) → ((𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦)‘𝑓) = ((𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦)‘𝑓))
7045, 48, 69eqfnfvd 7008 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐸) ∧ 𝑦 ∈ (Base‘𝐸))) → (𝑥(2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))𝑦) = (𝑥(2nd ‘((1st𝑀)‘𝑋))𝑦))
7137, 38, 70eqfnovd 48844 . . 3 (𝜑 → (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹)) = (2nd ‘((1st𝑀)‘𝑋)))
7236, 71opeq12d 4847 . 2 (𝜑 → ⟨(1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)), (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))⟩ = ⟨(1st ‘((1st𝑀)‘𝑋)), (2nd ‘((1st𝑀)‘𝑋))⟩)
73 relfunc 17830 . . 3 Rel (𝐸 Func 𝐶)
74 1st2nd 8020 . . 3 ((Rel (𝐸 Func 𝐶) ∧ (((1st𝐿)‘𝑋) ∘func 𝐹) ∈ (𝐸 Func 𝐶)) → (((1st𝐿)‘𝑋) ∘func 𝐹) = ⟨(1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)), (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))⟩)
7573, 11, 74sylancr 587 . 2 (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) = ⟨(1st ‘(((1st𝐿)‘𝑋) ∘func 𝐹)), (2nd ‘(((1st𝐿)‘𝑋) ∘func 𝐹))⟩)
76 1st2nd 8020 . . 3 ((Rel (𝐸 Func 𝐶) ∧ ((1st𝑀)‘𝑋) ∈ (𝐸 Func 𝐶)) → ((1st𝑀)‘𝑋) = ⟨(1st ‘((1st𝑀)‘𝑋)), (2nd ‘((1st𝑀)‘𝑋))⟩)
7773, 18, 76sylancr 587 . 2 (𝜑 → ((1st𝑀)‘𝑋) = ⟨(1st ‘((1st𝑀)‘𝑋)), (2nd ‘((1st𝑀)‘𝑋))⟩)
7872, 75, 773eqtr4d 2775 1 (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) = ((1st𝑀)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109  Rel wrel 5645  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  Hom chom 17237  Catccat 17631  Idccid 17632   Func cfunc 17822  func ccofu 17824  Δfunccdiag 18179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-nat 17914  df-fuc 17915  df-xpc 18139  df-1stf 18140  df-curf 18181  df-diag 18183
This theorem is referenced by:  prcofdiag  49373
  Copyright terms: Public domain W3C validator