Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erov2 | Structured version Visualization version GIF version |
Description: The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
eropr2.1 | ⊢ 𝐽 = (𝐴 / ∼ ) |
eropr2.2 | ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} |
eropr2.3 | ⊢ (𝜑 → ∼ ∈ 𝑋) |
eropr2.4 | ⊢ (𝜑 → ∼ Er 𝑈) |
eropr2.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
eropr2.6 | ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) |
eropr2.7 | ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) |
Ref | Expression |
---|---|
erov2 | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ([𝑃] ∼ ⨣ [𝑄] ∼ ) = [(𝑃 + 𝑄)] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eropr2.1 | . 2 ⊢ 𝐽 = (𝐴 / ∼ ) | |
2 | eropr2.3 | . 2 ⊢ (𝜑 → ∼ ∈ 𝑋) | |
3 | eropr2.4 | . 2 ⊢ (𝜑 → ∼ Er 𝑈) | |
4 | eropr2.5 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | |
5 | eropr2.6 | . 2 ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) | |
6 | eropr2.7 | . 2 ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) | |
7 | eropr2.2 | . 2 ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} | |
8 | 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2 | erov 8603 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ([𝑃] ∼ ⨣ [𝑄] ∼ ) = [(𝑃 + 𝑄)] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 × cxp 5587 ⟶wf 6429 (class class class)co 7275 {coprab 7276 Er wer 8495 [cec 8496 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-ec 8500 df-qs 8504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |