| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erov2 | Structured version Visualization version GIF version | ||
| Description: The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| eropr2.1 | ⊢ 𝐽 = (𝐴 / ∼ ) |
| eropr2.2 | ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} |
| eropr2.3 | ⊢ (𝜑 → ∼ ∈ 𝑋) |
| eropr2.4 | ⊢ (𝜑 → ∼ Er 𝑈) |
| eropr2.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| eropr2.6 | ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) |
| eropr2.7 | ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) |
| Ref | Expression |
|---|---|
| erov2 | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ([𝑃] ∼ ⨣ [𝑄] ∼ ) = [(𝑃 + 𝑄)] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr2.1 | . 2 ⊢ 𝐽 = (𝐴 / ∼ ) | |
| 2 | eropr2.3 | . 2 ⊢ (𝜑 → ∼ ∈ 𝑋) | |
| 3 | eropr2.4 | . 2 ⊢ (𝜑 → ∼ Er 𝑈) | |
| 4 | eropr2.5 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | |
| 5 | eropr2.6 | . 2 ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) | |
| 6 | eropr2.7 | . 2 ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) | |
| 7 | eropr2.2 | . 2 ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} | |
| 8 | 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2 | erov 8836 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ([𝑃] ∼ ⨣ [𝑄] ∼ ) = [(𝑃 + 𝑄)] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3931 class class class wbr 5123 × cxp 5663 ⟶wf 6537 (class class class)co 7413 {coprab 7414 Er wer 8724 [cec 8725 / cqs 8726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-ec 8729 df-qs 8733 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |