MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbnn Structured version   Visualization version   GIF version

Theorem unbnn 9219
Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9588 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unbnn ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem unbnn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssdomg 8948 . . . 4 (ω ∈ V → (𝐴 ⊆ ω → 𝐴 ≼ ω))
21imp 406 . . 3 ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω)
323adant3 1132 . 2 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≼ ω)
4 simp1 1136 . . 3 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → ω ∈ V)
5 ssexg 5273 . . . . 5 ((𝐴 ⊆ ω ∧ ω ∈ V) → 𝐴 ∈ V)
65ancoms 458 . . . 4 ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ∈ V)
763adant3 1132 . . 3 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ∈ V)
8 eqid 2729 . . . . 5 (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω)
98unblem4 9218 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω):ω–1-1𝐴)
1093adant1 1130 . . 3 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω):ω–1-1𝐴)
11 f1dom2g 8918 . . 3 ((ω ∈ V ∧ 𝐴 ∈ V ∧ (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω):ω–1-1𝐴) → ω ≼ 𝐴)
124, 7, 10, 11syl3anc 1373 . 2 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → ω ≼ 𝐴)
13 sbth 9038 . 2 ((𝐴 ≼ ω ∧ ω ≼ 𝐴) → 𝐴 ≈ ω)
143, 12, 13syl2anc 584 1 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  wss 3911   cint 4906   class class class wbr 5102  cmpt 5183  cres 5633  suc csuc 6322  1-1wf1 6496  ωcom 7822  reccrdg 8354  cen 8892  cdom 8893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-en 8896  df-dom 8897
This theorem is referenced by:  unbnn2  9220  isfinite2  9221  unbnn3  9588
  Copyright terms: Public domain W3C validator