| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unbnn | Structured version Visualization version GIF version | ||
| Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9544 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| unbnn | ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg 8917 | . . . 4 ⊢ (ω ∈ V → (𝐴 ⊆ ω → 𝐴 ≼ ω)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≼ ω) |
| 4 | simp1 1136 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ω ∈ V) | |
| 5 | ssexg 5256 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ω ∈ V) → 𝐴 ∈ V) | |
| 6 | 5 | ancoms 458 | . . . 4 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ∈ V) |
| 7 | 6 | 3adant3 1132 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
| 8 | eqid 2731 | . . . . 5 ⊢ (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω) | |
| 9 | 8 | unblem4 9174 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) |
| 10 | 9 | 3adant1 1130 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) |
| 11 | f1dom2g 8887 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ∈ V ∧ (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) → ω ≼ 𝐴) | |
| 12 | 4, 7, 10, 11 | syl3anc 1373 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ω ≼ 𝐴) |
| 13 | sbth 9005 | . 2 ⊢ ((𝐴 ≼ ω ∧ ω ≼ 𝐴) → 𝐴 ≈ ω) | |
| 14 | 3, 12, 13 | syl2anc 584 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ∩ cint 4892 class class class wbr 5086 ↦ cmpt 5167 ↾ cres 5613 suc csuc 6303 –1-1→wf1 6473 ωcom 7791 reccrdg 8323 ≈ cen 8861 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-en 8865 df-dom 8866 |
| This theorem is referenced by: unbnn2 9176 isfinite2 9177 unbnn3 9544 |
| Copyright terms: Public domain | W3C validator |