| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unbnn | Structured version Visualization version GIF version | ||
| Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9588 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| unbnn | ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg 8948 | . . . 4 ⊢ (ω ∈ V → (𝐴 ⊆ ω → 𝐴 ≼ ω)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≼ ω) |
| 4 | simp1 1136 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ω ∈ V) | |
| 5 | ssexg 5273 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ω ∈ V) → 𝐴 ∈ V) | |
| 6 | 5 | ancoms 458 | . . . 4 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ∈ V) |
| 7 | 6 | 3adant3 1132 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
| 8 | eqid 2729 | . . . . 5 ⊢ (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω) | |
| 9 | 8 | unblem4 9218 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) |
| 10 | 9 | 3adant1 1130 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) |
| 11 | f1dom2g 8918 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ∈ V ∧ (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) → ω ≼ 𝐴) | |
| 12 | 4, 7, 10, 11 | syl3anc 1373 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ω ≼ 𝐴) |
| 13 | sbth 9038 | . 2 ⊢ ((𝐴 ≼ ω ∧ ω ≼ 𝐴) → 𝐴 ≈ ω) | |
| 14 | 3, 12, 13 | syl2anc 584 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ∩ cint 4906 class class class wbr 5102 ↦ cmpt 5183 ↾ cres 5633 suc csuc 6322 –1-1→wf1 6496 ωcom 7822 reccrdg 8354 ≈ cen 8892 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-en 8896 df-dom 8897 |
| This theorem is referenced by: unbnn2 9220 isfinite2 9221 unbnn3 9588 |
| Copyright terms: Public domain | W3C validator |