MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbnn Structured version   Visualization version   GIF version

Theorem unbnn 9175
Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9544 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unbnn ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem unbnn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssdomg 8917 . . . 4 (ω ∈ V → (𝐴 ⊆ ω → 𝐴 ≼ ω))
21imp 406 . . 3 ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω)
323adant3 1132 . 2 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≼ ω)
4 simp1 1136 . . 3 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → ω ∈ V)
5 ssexg 5256 . . . . 5 ((𝐴 ⊆ ω ∧ ω ∈ V) → 𝐴 ∈ V)
65ancoms 458 . . . 4 ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ∈ V)
763adant3 1132 . . 3 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ∈ V)
8 eqid 2731 . . . . 5 (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω)
98unblem4 9174 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω):ω–1-1𝐴)
1093adant1 1130 . . 3 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω):ω–1-1𝐴)
11 f1dom2g 8887 . . 3 ((ω ∈ V ∧ 𝐴 ∈ V ∧ (rec((𝑧 ∈ V ↦ (𝐴 ∖ suc 𝑧)), 𝐴) ↾ ω):ω–1-1𝐴) → ω ≼ 𝐴)
124, 7, 10, 11syl3anc 1373 . 2 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → ω ≼ 𝐴)
13 sbth 9005 . 2 ((𝐴 ≼ ω ∧ ω ≼ 𝐴) → 𝐴 ≈ ω)
143, 12, 13syl2anc 584 1 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  wss 3897   cint 4892   class class class wbr 5086  cmpt 5167  cres 5613  suc csuc 6303  1-1wf1 6473  ωcom 7791  reccrdg 8323  cen 8861  cdom 8862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-en 8865  df-dom 8866
This theorem is referenced by:  unbnn2  9176  isfinite2  9177  unbnn3  9544
  Copyright terms: Public domain W3C validator