MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1o Structured version   Visualization version   GIF version

Theorem oacomf1o 8506
Description: Define a bijection from 𝐴 +o 𝐵 to 𝐵 +o 𝐴. Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom 9580). (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1o.1 𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
Assertion
Ref Expression
oacomf1o ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem oacomf1o
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (𝑥𝐴 ↦ (𝐵 +o 𝑥)) = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
21oacomf1olem 8505 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∧ (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅))
32simpld 494 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)))
4 eqid 2729 . . . . . . . . 9 (𝑥𝐵 ↦ (𝐴 +o 𝑥)) = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
54oacomf1olem 8505 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅))
65ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅))
76simpld 494 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
8 f1ocnv 6794 . . . . . 6 ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵)
97, 8syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵)
10 incom 4168 . . . . . 6 (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴)
116simprd 495 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)
1210, 11eqtrid 2776 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = ∅)
132simprd 495 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅)
14 f1oun 6801 . . . . 5 ((((𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∧ (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵) ∧ ((𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = ∅ ∧ (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅)) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
153, 9, 12, 13, 14syl22anc 838 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
16 oacomf1o.1 . . . . 5 𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
17 f1oeq1 6770 . . . . 5 (𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))) → (𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
1816, 17ax-mp 5 . . . 4 (𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
1915, 18sylibr 234 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
20 oarec 8503 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
2120f1oeq2d 6778 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
2219, 21mpbird 257 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
23 oarec 8503 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 +o 𝐴) = (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))))
2423ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝐴) = (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))))
25 uncom 4117 . . . 4 (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))) = (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)
2624, 25eqtrdi 2780 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝐴) = (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
2726f1oeq3d 6779 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴) ↔ 𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
2822, 27mpbird 257 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cun 3909  cin 3910  c0 4292  cmpt 5183  ccnv 5630  ran crn 5632  Oncon0 6320  1-1-ontowf1o 6498  (class class class)co 7369   +o coa 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415
This theorem is referenced by:  cnfcomlem  9628
  Copyright terms: Public domain W3C validator