MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1o Structured version   Visualization version   GIF version

Theorem oacomf1o 8396
Description: Define a bijection from 𝐴 +o 𝐵 to 𝐵 +o 𝐴. Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom 9409). (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1o.1 𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
Assertion
Ref Expression
oacomf1o ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem oacomf1o
StepHypRef Expression
1 eqid 2738 . . . . . . 7 (𝑥𝐴 ↦ (𝐵 +o 𝑥)) = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
21oacomf1olem 8395 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∧ (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅))
32simpld 495 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)))
4 eqid 2738 . . . . . . . . 9 (𝑥𝐵 ↦ (𝐴 +o 𝑥)) = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
54oacomf1olem 8395 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅))
65ancoms 459 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅))
76simpld 495 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
8 f1ocnv 6728 . . . . . 6 ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵)
97, 8syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵)
10 incom 4135 . . . . . 6 (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴)
116simprd 496 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)
1210, 11eqtrid 2790 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = ∅)
132simprd 496 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅)
14 f1oun 6735 . . . . 5 ((((𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∧ (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵) ∧ ((𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = ∅ ∧ (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅)) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
153, 9, 12, 13, 14syl22anc 836 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
16 oacomf1o.1 . . . . 5 𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
17 f1oeq1 6704 . . . . 5 (𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))) → (𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
1816, 17ax-mp 5 . . . 4 (𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
1915, 18sylibr 233 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
20 oarec 8393 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
2120f1oeq2d 6712 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
2219, 21mpbird 256 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
23 oarec 8393 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 +o 𝐴) = (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))))
2423ancoms 459 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝐴) = (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))))
25 uncom 4087 . . . 4 (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))) = (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)
2624, 25eqtrdi 2794 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝐴) = (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
2726f1oeq3d 6713 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴) ↔ 𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
2822, 27mpbird 256 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cun 3885  cin 3886  c0 4256  cmpt 5157  ccnv 5588  ran crn 5590  Oncon0 6266  1-1-ontowf1o 6432  (class class class)co 7275   +o coa 8294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301
This theorem is referenced by:  cnfcomlem  9457
  Copyright terms: Public domain W3C validator