MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1o Structured version   Visualization version   GIF version

Theorem oacomf1o 8561
Description: Define a bijection from 𝐴 +o 𝐡 to 𝐡 +o 𝐴. Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom 9642). (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1o.1 𝐹 = ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))
Assertion
Ref Expression
oacomf1o ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐹:(𝐴 +o 𝐡)–1-1-ontoβ†’(𝐡 +o 𝐴))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡
Allowed substitution hint:   𝐹(π‘₯)

Proof of Theorem oacomf1o
StepHypRef Expression
1 eqid 2732 . . . . . . 7 (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) = (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯))
21oacomf1olem 8560 . . . . . 6 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)):𝐴–1-1-ontoβ†’ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) ∧ (ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) ∩ 𝐡) = βˆ…))
32simpld 495 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)):𝐴–1-1-ontoβ†’ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)))
4 eqid 2732 . . . . . . . . 9 (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) = (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))
54oacomf1olem 8560 . . . . . . . 8 ((𝐡 ∈ On ∧ 𝐴 ∈ On) β†’ ((π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):𝐡–1-1-ontoβ†’ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∧ (ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∩ 𝐴) = βˆ…))
65ancoms 459 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):𝐡–1-1-ontoβ†’ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∧ (ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∩ 𝐴) = βˆ…))
76simpld 495 . . . . . 6 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):𝐡–1-1-ontoβ†’ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))
8 f1ocnv 6842 . . . . . 6 ((π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):𝐡–1-1-ontoβ†’ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) β†’ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))–1-1-onto→𝐡)
97, 8syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))–1-1-onto→𝐡)
10 incom 4200 . . . . . 6 (𝐴 ∩ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))) = (ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∩ 𝐴)
116simprd 496 . . . . . 6 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∩ 𝐴) = βˆ…)
1210, 11eqtrid 2784 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 ∩ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))) = βˆ…)
132simprd 496 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) ∩ 𝐡) = βˆ…)
14 f1oun 6849 . . . . 5 ((((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)):𝐴–1-1-ontoβ†’ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) ∧ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))–1-1-onto→𝐡) ∧ ((𝐴 ∩ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))) = βˆ… ∧ (ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) ∩ 𝐡) = βˆ…)) β†’ ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))):(𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡))
153, 9, 12, 13, 14syl22anc 837 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))):(𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡))
16 oacomf1o.1 . . . . 5 𝐹 = ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))
17 f1oeq1 6818 . . . . 5 (𝐹 = ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))) β†’ (𝐹:(𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡) ↔ ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))):(𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡)))
1816, 17ax-mp 5 . . . 4 (𝐹:(𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡) ↔ ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))):(𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡))
1915, 18sylibr 233 . . 3 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐹:(𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡))
20 oarec 8558 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 +o 𝐡) = (𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))))
2120f1oeq2d 6826 . . 3 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐹:(𝐴 +o 𝐡)–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡) ↔ 𝐹:(𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡)))
2219, 21mpbird 256 . 2 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐹:(𝐴 +o 𝐡)–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡))
23 oarec 8558 . . . . 5 ((𝐡 ∈ On ∧ 𝐴 ∈ On) β†’ (𝐡 +o 𝐴) = (𝐡 βˆͺ ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯))))
2423ancoms 459 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐡 +o 𝐴) = (𝐡 βˆͺ ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯))))
25 uncom 4152 . . . 4 (𝐡 βˆͺ ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯))) = (ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡)
2624, 25eqtrdi 2788 . . 3 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐡 +o 𝐴) = (ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡))
2726f1oeq3d 6827 . 2 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐹:(𝐴 +o 𝐡)–1-1-ontoβ†’(𝐡 +o 𝐴) ↔ 𝐹:(𝐴 +o 𝐡)–1-1-ontoβ†’(ran (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ 𝐡)))
2822, 27mpbird 256 1 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐹:(𝐴 +o 𝐡)–1-1-ontoβ†’(𝐡 +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βˆͺ cun 3945   ∩ cin 3946  βˆ…c0 4321   ↦ cmpt 5230  β—‘ccnv 5674  ran crn 5676  Oncon0 6361  β€“1-1-ontoβ†’wf1o 6539  (class class class)co 7405   +o coa 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-oadd 8466
This theorem is referenced by:  cnfcomlem  9690
  Copyright terms: Public domain W3C validator