MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1o Structured version   Visualization version   GIF version

Theorem oacomf1o 8191
Description: Define a bijection from 𝐴 +o 𝐵 to 𝐵 +o 𝐴. Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom 9114). (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1o.1 𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
Assertion
Ref Expression
oacomf1o ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem oacomf1o
StepHypRef Expression
1 eqid 2821 . . . . . . 7 (𝑥𝐴 ↦ (𝐵 +o 𝑥)) = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
21oacomf1olem 8190 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∧ (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅))
32simpld 497 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)))
4 eqid 2821 . . . . . . . . 9 (𝑥𝐵 ↦ (𝐴 +o 𝑥)) = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
54oacomf1olem 8190 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅))
65ancoms 461 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅))
76simpld 497 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
8 f1ocnv 6627 . . . . . 6 ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵)
97, 8syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵)
10 incom 4178 . . . . . 6 (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴)
116simprd 498 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)
1210, 11syl5eq 2868 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = ∅)
132simprd 498 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅)
14 f1oun 6634 . . . . 5 ((((𝑥𝐴 ↦ (𝐵 +o 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∧ (𝑥𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto𝐵) ∧ ((𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = ∅ ∧ (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅)) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
153, 9, 12, 13, 14syl22anc 836 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
16 oacomf1o.1 . . . . 5 𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
17 f1oeq1 6604 . . . . 5 (𝐹 = ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))) → (𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
1816, 17ax-mp 5 . . . 4 (𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ ((𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
1915, 18sylibr 236 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
20 oarec 8188 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
2120f1oeq2d 6611 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
2219, 21mpbird 259 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
23 oarec 8188 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 +o 𝐴) = (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))))
2423ancoms 461 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝐴) = (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))))
25 uncom 4129 . . . 4 (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +o 𝑥))) = (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)
2624, 25syl6eq 2872 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝐴) = (ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))
2726f1oeq3d 6612 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴) ↔ 𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)))
2822, 27mpbird 259 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cun 3934  cin 3935  c0 4291  cmpt 5146  ccnv 5554  ran crn 5556  Oncon0 6191  1-1-ontowf1o 6354  (class class class)co 7156   +o coa 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106
This theorem is referenced by:  cnfcomlem  9162
  Copyright terms: Public domain W3C validator