Proof of Theorem oacomf1o
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) |
| 2 | 1 | oacomf1olem 8581 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)):𝐴–1-1-onto→ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅)) |
| 3 | 2 | simpld 494 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)):𝐴–1-1-onto→ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥))) |
| 4 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) |
| 5 | 4 | oacomf1olem 8581 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran
(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)) |
| 6 | 5 | ancoms 458 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran
(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)) |
| 7 | 6 | simpld 494 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran
(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) |
| 8 | | f1ocnv 6835 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran
(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) → ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto→𝐵) |
| 9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto→𝐵) |
| 10 | | incom 4189 |
. . . . . 6
⊢ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) |
| 11 | 6 | simprd 495 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅) |
| 12 | 10, 11 | eqtrid 2783 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = ∅) |
| 13 | 2 | simprd 495 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅) |
| 14 | | f1oun 6842 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)):𝐴–1-1-onto→ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∧ ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))–1-1-onto→𝐵) ∧ ((𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = ∅ ∧ (ran (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∩ 𝐵) = ∅)) → ((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)) |
| 15 | 3, 9, 12, 13, 14 | syl22anc 838 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)) |
| 16 | | oacomf1o.1 |
. . . . 5
⊢ 𝐹 = ((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) |
| 17 | | f1oeq1 6811 |
. . . . 5
⊢ (𝐹 = ((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) → (𝐹:(𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ ((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))) |
| 18 | 16, 17 | ax-mp 5 |
. . . 4
⊢ (𝐹:(𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ ((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))):(𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)) |
| 19 | 15, 18 | sylibr 234 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)) |
| 20 | | oarec 8579 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) |
| 21 | 20 | f1oeq2d 6819 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) ↔ 𝐹:(𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))) |
| 22 | 19, 21 | mpbird 257 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)) |
| 23 | | oarec 8579 |
. . . . 5
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 +o 𝐴) = (𝐵 ∪ ran (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)))) |
| 24 | 23 | ancoms 458 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝐴) = (𝐵 ∪ ran (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)))) |
| 25 | | uncom 4138 |
. . . 4
⊢ (𝐵 ∪ ran (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥))) = (ran (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵) |
| 26 | 24, 25 | eqtrdi 2787 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝐴) = (ran (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵)) |
| 27 | 26 | f1oeq3d 6820 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴) ↔ 𝐹:(𝐴 +o 𝐵)–1-1-onto→(ran
(𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ 𝐵))) |
| 28 | 22, 27 | mpbird 257 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴)) |