MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oef1o Structured version   Visualization version   GIF version

Theorem oef1o 9767
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption (𝐹‘∅) = ∅ can be discharged using fveqf1o 7338.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
oef1o.f (𝜑𝐹:𝐴1-1-onto𝐶)
oef1o.g (𝜑𝐺:𝐵1-1-onto𝐷)
oef1o.a (𝜑𝐴 ∈ (On ∖ 1o))
oef1o.b (𝜑𝐵 ∈ On)
oef1o.c (𝜑𝐶 ∈ On)
oef1o.d (𝜑𝐷 ∈ On)
oef1o.z (𝜑 → (𝐹‘∅) = ∅)
oef1o.k 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
oef1o.h 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
Assertion
Ref Expression
oef1o (𝜑𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem oef1o
StepHypRef Expression
1 eqid 2740 . . . . 5 dom (𝐶 CNF 𝐷) = dom (𝐶 CNF 𝐷)
2 oef1o.c . . . . 5 (𝜑𝐶 ∈ On)
3 oef1o.d . . . . 5 (𝜑𝐷 ∈ On)
41, 2, 3cantnff1o 9765 . . . 4 (𝜑 → (𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶o 𝐷))
5 eqid 2740 . . . . . . . 8 {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}
6 eqid 2740 . . . . . . . 8 {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}
7 eqid 2740 . . . . . . . 8 (𝐹‘∅) = (𝐹‘∅)
8 oef1o.g . . . . . . . . 9 (𝜑𝐺:𝐵1-1-onto𝐷)
9 f1ocnv 6874 . . . . . . . . 9 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
108, 9syl 17 . . . . . . . 8 (𝜑𝐺:𝐷1-1-onto𝐵)
11 oef1o.f . . . . . . . 8 (𝜑𝐹:𝐴1-1-onto𝐶)
12 oef1o.b . . . . . . . 8 (𝜑𝐵 ∈ On)
13 oef1o.a . . . . . . . 8 (𝜑𝐴 ∈ (On ∖ 1o))
14 ondif1 8557 . . . . . . . . . 10 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
1514simprbi 496 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1o) → ∅ ∈ 𝐴)
1613, 15syl 17 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
175, 6, 7, 10, 11, 12, 13, 3, 2, 16mapfien 9477 . . . . . . 7 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
18 oef1o.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
19 f1oeq1 6850 . . . . . . . 8 (𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))) → (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2018, 19ax-mp 5 . . . . . . 7 (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2117, 20sylibr 234 . . . . . 6 (𝜑𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
22 eqid 2740 . . . . . . . . 9 {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅}
2322, 2, 3cantnfdm 9733 . . . . . . . 8 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅})
24 oef1o.z . . . . . . . . . 10 (𝜑 → (𝐹‘∅) = ∅)
2524breq2d 5178 . . . . . . . . 9 (𝜑 → (𝑥 finSupp (𝐹‘∅) ↔ 𝑥 finSupp ∅))
2625rabbidv 3451 . . . . . . . 8 (𝜑 → {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅})
2723, 26eqtr4d 2783 . . . . . . 7 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2827f1oeq3d 6859 . . . . . 6 (𝜑 → (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2921, 28mpbird 257 . . . . 5 (𝜑𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷))
3013eldifad 3988 . . . . . . 7 (𝜑𝐴 ∈ On)
315, 30, 12cantnfdm 9733 . . . . . 6 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅})
3231f1oeq2d 6858 . . . . 5 (𝜑 → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷)))
3329, 32mpbird 257 . . . 4 (𝜑𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷))
34 f1oco 6885 . . . 4 (((𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶o 𝐷) ∧ 𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷)) → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷))
354, 33, 34syl2anc 583 . . 3 (𝜑 → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷))
36 eqid 2740 . . . . 5 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
3736, 30, 12cantnff1o 9765 . . . 4 (𝜑 → (𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴o 𝐵))
38 f1ocnv 6874 . . . 4 ((𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴o 𝐵) → (𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
3937, 38syl 17 . . 3 (𝜑(𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
40 f1oco 6885 . . 3 ((((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷) ∧ (𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵)) → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
4135, 39, 40syl2anc 583 . 2 (𝜑 → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
42 oef1o.h . . 3 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
43 f1oeq1 6850 . . 3 (𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)) → (𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷)))
4442, 43ax-mp 5 . 2 (𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
4541, 44sylibr 234 1 (𝜑𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  c0 4352   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  ccom 5704  Oncon0 6395  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  1oc1o 8515  o coe 8521  m cmap 8884   finSupp cfsupp 9431   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-cnf 9731
This theorem is referenced by:  infxpenc  10087
  Copyright terms: Public domain W3C validator