MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oef1o Structured version   Visualization version   GIF version

Theorem oef1o 9456
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption (𝐹‘∅) = ∅ can be discharged using fveqf1o 7175.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
oef1o.f (𝜑𝐹:𝐴1-1-onto𝐶)
oef1o.g (𝜑𝐺:𝐵1-1-onto𝐷)
oef1o.a (𝜑𝐴 ∈ (On ∖ 1o))
oef1o.b (𝜑𝐵 ∈ On)
oef1o.c (𝜑𝐶 ∈ On)
oef1o.d (𝜑𝐷 ∈ On)
oef1o.z (𝜑 → (𝐹‘∅) = ∅)
oef1o.k 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
oef1o.h 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
Assertion
Ref Expression
oef1o (𝜑𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem oef1o
StepHypRef Expression
1 eqid 2738 . . . . 5 dom (𝐶 CNF 𝐷) = dom (𝐶 CNF 𝐷)
2 oef1o.c . . . . 5 (𝜑𝐶 ∈ On)
3 oef1o.d . . . . 5 (𝜑𝐷 ∈ On)
41, 2, 3cantnff1o 9454 . . . 4 (𝜑 → (𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶o 𝐷))
5 eqid 2738 . . . . . . . 8 {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}
6 eqid 2738 . . . . . . . 8 {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}
7 eqid 2738 . . . . . . . 8 (𝐹‘∅) = (𝐹‘∅)
8 oef1o.g . . . . . . . . 9 (𝜑𝐺:𝐵1-1-onto𝐷)
9 f1ocnv 6728 . . . . . . . . 9 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
108, 9syl 17 . . . . . . . 8 (𝜑𝐺:𝐷1-1-onto𝐵)
11 oef1o.f . . . . . . . 8 (𝜑𝐹:𝐴1-1-onto𝐶)
12 oef1o.b . . . . . . . 8 (𝜑𝐵 ∈ On)
13 oef1o.a . . . . . . . 8 (𝜑𝐴 ∈ (On ∖ 1o))
14 ondif1 8331 . . . . . . . . . 10 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
1514simprbi 497 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1o) → ∅ ∈ 𝐴)
1613, 15syl 17 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
175, 6, 7, 10, 11, 12, 13, 3, 2, 16mapfien 9167 . . . . . . 7 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
18 oef1o.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
19 f1oeq1 6704 . . . . . . . 8 (𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))) → (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2018, 19ax-mp 5 . . . . . . 7 (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2117, 20sylibr 233 . . . . . 6 (𝜑𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
22 eqid 2738 . . . . . . . . 9 {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅}
2322, 2, 3cantnfdm 9422 . . . . . . . 8 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅})
24 oef1o.z . . . . . . . . . 10 (𝜑 → (𝐹‘∅) = ∅)
2524breq2d 5086 . . . . . . . . 9 (𝜑 → (𝑥 finSupp (𝐹‘∅) ↔ 𝑥 finSupp ∅))
2625rabbidv 3414 . . . . . . . 8 (𝜑 → {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅})
2723, 26eqtr4d 2781 . . . . . . 7 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2827f1oeq3d 6713 . . . . . 6 (𝜑 → (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2921, 28mpbird 256 . . . . 5 (𝜑𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷))
3013eldifad 3899 . . . . . . 7 (𝜑𝐴 ∈ On)
315, 30, 12cantnfdm 9422 . . . . . 6 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅})
3231f1oeq2d 6712 . . . . 5 (𝜑 → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷)))
3329, 32mpbird 256 . . . 4 (𝜑𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷))
34 f1oco 6739 . . . 4 (((𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶o 𝐷) ∧ 𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷)) → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷))
354, 33, 34syl2anc 584 . . 3 (𝜑 → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷))
36 eqid 2738 . . . . 5 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
3736, 30, 12cantnff1o 9454 . . . 4 (𝜑 → (𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴o 𝐵))
38 f1ocnv 6728 . . . 4 ((𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴o 𝐵) → (𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
3937, 38syl 17 . . 3 (𝜑(𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
40 f1oco 6739 . . 3 ((((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷) ∧ (𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵)) → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
4135, 39, 40syl2anc 584 . 2 (𝜑 → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
42 oef1o.h . . 3 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
43 f1oeq1 6704 . . 3 (𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)) → (𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷)))
4442, 43ax-mp 5 . 2 (𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
4541, 44sylibr 233 1 (𝜑𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  {crab 3068  cdif 3884  c0 4256   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  ccom 5593  Oncon0 6266  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1oc1o 8290  o coe 8296  m cmap 8615   finSupp cfsupp 9128   CNF ccnf 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-cnf 9420
This theorem is referenced by:  infxpenc  9774
  Copyright terms: Public domain W3C validator