MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oef1o Structured version   Visualization version   GIF version

Theorem oef1o 9588
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption (𝐹‘∅) = ∅ can be discharged using fveqf1o 7236.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
oef1o.f (𝜑𝐹:𝐴1-1-onto𝐶)
oef1o.g (𝜑𝐺:𝐵1-1-onto𝐷)
oef1o.a (𝜑𝐴 ∈ (On ∖ 1o))
oef1o.b (𝜑𝐵 ∈ On)
oef1o.c (𝜑𝐶 ∈ On)
oef1o.d (𝜑𝐷 ∈ On)
oef1o.z (𝜑 → (𝐹‘∅) = ∅)
oef1o.k 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
oef1o.h 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
Assertion
Ref Expression
oef1o (𝜑𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem oef1o
StepHypRef Expression
1 eqid 2731 . . . . 5 dom (𝐶 CNF 𝐷) = dom (𝐶 CNF 𝐷)
2 oef1o.c . . . . 5 (𝜑𝐶 ∈ On)
3 oef1o.d . . . . 5 (𝜑𝐷 ∈ On)
41, 2, 3cantnff1o 9586 . . . 4 (𝜑 → (𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶o 𝐷))
5 eqid 2731 . . . . . . . 8 {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}
6 eqid 2731 . . . . . . . 8 {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}
7 eqid 2731 . . . . . . . 8 (𝐹‘∅) = (𝐹‘∅)
8 oef1o.g . . . . . . . . 9 (𝜑𝐺:𝐵1-1-onto𝐷)
9 f1ocnv 6775 . . . . . . . . 9 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
108, 9syl 17 . . . . . . . 8 (𝜑𝐺:𝐷1-1-onto𝐵)
11 oef1o.f . . . . . . . 8 (𝜑𝐹:𝐴1-1-onto𝐶)
12 oef1o.b . . . . . . . 8 (𝜑𝐵 ∈ On)
13 oef1o.a . . . . . . . 8 (𝜑𝐴 ∈ (On ∖ 1o))
14 ondif1 8416 . . . . . . . . . 10 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
1514simprbi 496 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1o) → ∅ ∈ 𝐴)
1613, 15syl 17 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
175, 6, 7, 10, 11, 12, 13, 3, 2, 16mapfien 9292 . . . . . . 7 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
18 oef1o.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
19 f1oeq1 6751 . . . . . . . 8 (𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))) → (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2018, 19ax-mp 5 . . . . . . 7 (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2117, 20sylibr 234 . . . . . 6 (𝜑𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
22 eqid 2731 . . . . . . . . 9 {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅}
2322, 2, 3cantnfdm 9554 . . . . . . . 8 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅})
24 oef1o.z . . . . . . . . . 10 (𝜑 → (𝐹‘∅) = ∅)
2524breq2d 5101 . . . . . . . . 9 (𝜑 → (𝑥 finSupp (𝐹‘∅) ↔ 𝑥 finSupp ∅))
2625rabbidv 3402 . . . . . . . 8 (𝜑 → {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅})
2723, 26eqtr4d 2769 . . . . . . 7 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2827f1oeq3d 6760 . . . . . 6 (𝜑 → (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2921, 28mpbird 257 . . . . 5 (𝜑𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷))
3013eldifad 3909 . . . . . . 7 (𝜑𝐴 ∈ On)
315, 30, 12cantnfdm 9554 . . . . . 6 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅})
3231f1oeq2d 6759 . . . . 5 (𝜑 → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷)))
3329, 32mpbird 257 . . . 4 (𝜑𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷))
34 f1oco 6786 . . . 4 (((𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶o 𝐷) ∧ 𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷)) → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷))
354, 33, 34syl2anc 584 . . 3 (𝜑 → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷))
36 eqid 2731 . . . . 5 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
3736, 30, 12cantnff1o 9586 . . . 4 (𝜑 → (𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴o 𝐵))
38 f1ocnv 6775 . . . 4 ((𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴o 𝐵) → (𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
3937, 38syl 17 . . 3 (𝜑(𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
40 f1oco 6786 . . 3 ((((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷) ∧ (𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵)) → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
4135, 39, 40syl2anc 584 . 2 (𝜑 → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
42 oef1o.h . . 3 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
43 f1oeq1 6751 . . 3 (𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)) → (𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷)))
4442, 43ax-mp 5 . 2 (𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
4541, 44sylibr 234 1 (𝜑𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {crab 3395  cdif 3894  c0 4280   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  ccom 5618  Oncon0 6306  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1oc1o 8378  o coe 8384  m cmap 8750   finSupp cfsupp 9245   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-cnf 9552
This theorem is referenced by:  infxpenc  9909
  Copyright terms: Public domain W3C validator