MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oef1o Structured version   Visualization version   GIF version

Theorem oef1o 9738
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption (𝐹‘∅) = ∅ can be discharged using fveqf1o 7322.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
oef1o.f (𝜑𝐹:𝐴1-1-onto𝐶)
oef1o.g (𝜑𝐺:𝐵1-1-onto𝐷)
oef1o.a (𝜑𝐴 ∈ (On ∖ 1o))
oef1o.b (𝜑𝐵 ∈ On)
oef1o.c (𝜑𝐶 ∈ On)
oef1o.d (𝜑𝐷 ∈ On)
oef1o.z (𝜑 → (𝐹‘∅) = ∅)
oef1o.k 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
oef1o.h 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
Assertion
Ref Expression
oef1o (𝜑𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem oef1o
StepHypRef Expression
1 eqid 2737 . . . . 5 dom (𝐶 CNF 𝐷) = dom (𝐶 CNF 𝐷)
2 oef1o.c . . . . 5 (𝜑𝐶 ∈ On)
3 oef1o.d . . . . 5 (𝜑𝐷 ∈ On)
41, 2, 3cantnff1o 9736 . . . 4 (𝜑 → (𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶o 𝐷))
5 eqid 2737 . . . . . . . 8 {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}
6 eqid 2737 . . . . . . . 8 {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}
7 eqid 2737 . . . . . . . 8 (𝐹‘∅) = (𝐹‘∅)
8 oef1o.g . . . . . . . . 9 (𝜑𝐺:𝐵1-1-onto𝐷)
9 f1ocnv 6860 . . . . . . . . 9 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
108, 9syl 17 . . . . . . . 8 (𝜑𝐺:𝐷1-1-onto𝐵)
11 oef1o.f . . . . . . . 8 (𝜑𝐹:𝐴1-1-onto𝐶)
12 oef1o.b . . . . . . . 8 (𝜑𝐵 ∈ On)
13 oef1o.a . . . . . . . 8 (𝜑𝐴 ∈ (On ∖ 1o))
14 ondif1 8539 . . . . . . . . . 10 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
1514simprbi 496 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1o) → ∅ ∈ 𝐴)
1613, 15syl 17 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
175, 6, 7, 10, 11, 12, 13, 3, 2, 16mapfien 9448 . . . . . . 7 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
18 oef1o.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
19 f1oeq1 6836 . . . . . . . 8 (𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))) → (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2018, 19ax-mp 5 . . . . . . 7 (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2117, 20sylibr 234 . . . . . 6 (𝜑𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
22 eqid 2737 . . . . . . . . 9 {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅}
2322, 2, 3cantnfdm 9704 . . . . . . . 8 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅})
24 oef1o.z . . . . . . . . . 10 (𝜑 → (𝐹‘∅) = ∅)
2524breq2d 5155 . . . . . . . . 9 (𝜑 → (𝑥 finSupp (𝐹‘∅) ↔ 𝑥 finSupp ∅))
2625rabbidv 3444 . . . . . . . 8 (𝜑 → {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp ∅})
2723, 26eqtr4d 2780 . . . . . . 7 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2827f1oeq3d 6845 . . . . . 6 (𝜑 → (𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶m 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2921, 28mpbird 257 . . . . 5 (𝜑𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷))
3013eldifad 3963 . . . . . . 7 (𝜑𝐴 ∈ On)
315, 30, 12cantnfdm 9704 . . . . . 6 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅})
3231f1oeq2d 6844 . . . . 5 (𝜑 → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷)))
3329, 32mpbird 257 . . . 4 (𝜑𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷))
34 f1oco 6871 . . . 4 (((𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶o 𝐷) ∧ 𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷)) → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷))
354, 33, 34syl2anc 584 . . 3 (𝜑 → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷))
36 eqid 2737 . . . . 5 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
3736, 30, 12cantnff1o 9736 . . . 4 (𝜑 → (𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴o 𝐵))
38 f1ocnv 6860 . . . 4 ((𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴o 𝐵) → (𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
3937, 38syl 17 . . 3 (𝜑(𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
40 f1oco 6871 . . 3 ((((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶o 𝐷) ∧ (𝐴 CNF 𝐵):(𝐴o 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵)) → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
4135, 39, 40syl2anc 584 . 2 (𝜑 → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
42 oef1o.h . . 3 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
43 f1oeq1 6836 . . 3 (𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)) → (𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷)))
4442, 43ax-mp 5 . 2 (𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
4541, 44sylibr 234 1 (𝜑𝐻:(𝐴o 𝐵)–1-1-onto→(𝐶o 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {crab 3436  cdif 3948  c0 4333   class class class wbr 5143  cmpt 5225  ccnv 5684  dom cdm 5685  ccom 5689  Oncon0 6384  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  1oc1o 8499  o coe 8505  m cmap 8866   finSupp cfsupp 9401   CNF ccnf 9701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-seqom 8488  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-oexp 8512  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-cnf 9702
This theorem is referenced by:  infxpenc  10058
  Copyright terms: Public domain W3C validator