MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc Structured version   Visualization version   GIF version

Theorem infxpenc 9438
Description: A canonical version of infxpen 9434, by a completely different approach (although it uses infxpen 9434 via xpomen 9435). Using Cantor's normal form, we can show that 𝐴o 𝐵 respects equinumerosity (oef1o 9155), so that all the steps of (ω↑𝑊) · (ω↑𝑊) ≈ ω↑(2𝑊) ≈ (ω↑2)↑𝑊 ≈ ω↑𝑊 can be verified using bijections to do the ordinal commutations. (The assumption on 𝑁 can be satisfied using cnfcom3c 9163.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc.1 (𝜑𝐴 ∈ On)
infxpenc.2 (𝜑 → ω ⊆ 𝐴)
infxpenc.3 (𝜑𝑊 ∈ (On ∖ 1o))
infxpenc.4 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
infxpenc.5 (𝜑 → (𝐹‘∅) = ∅)
infxpenc.6 (𝜑𝑁:𝐴1-1-onto→(ω ↑o 𝑊))
infxpenc.k 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
infxpenc.h 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑o 2o) CNF 𝑊))
infxpenc.l 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
infxpenc.x 𝑋 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))
infxpenc.y 𝑌 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧))
infxpenc.j 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·o 2o)))
infxpenc.z 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))
infxpenc.t 𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩)
infxpenc.g 𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
Assertion
Ref Expression
infxpenc (𝜑𝐺:(𝐴 × 𝐴)–1-1-onto𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑤,𝑦,𝑧,𝑊   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐴(𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝐿(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑌(𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem infxpenc
StepHypRef Expression
1 infxpenc.6 . . . 4 (𝜑𝑁:𝐴1-1-onto→(ω ↑o 𝑊))
2 f1ocnv 6622 . . . 4 (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) → 𝑁:(ω ↑o 𝑊)–1-1-onto𝐴)
31, 2syl 17 . . 3 (𝜑𝑁:(ω ↑o 𝑊)–1-1-onto𝐴)
4 infxpenc.4 . . . . . . . 8 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
5 f1oi 6647 . . . . . . . . 9 ( I ↾ 𝑊):𝑊1-1-onto𝑊
65a1i 11 . . . . . . . 8 (𝜑 → ( I ↾ 𝑊):𝑊1-1-onto𝑊)
7 omelon 9103 . . . . . . . . . . 11 ω ∈ On
87a1i 11 . . . . . . . . . 10 (𝜑 → ω ∈ On)
9 2on 8105 . . . . . . . . . 10 2o ∈ On
10 oecl 8156 . . . . . . . . . 10 ((ω ∈ On ∧ 2o ∈ On) → (ω ↑o 2o) ∈ On)
118, 9, 10sylancl 588 . . . . . . . . 9 (𝜑 → (ω ↑o 2o) ∈ On)
129a1i 11 . . . . . . . . . 10 (𝜑 → 2o ∈ On)
13 peano1 7595 . . . . . . . . . . 11 ∅ ∈ ω
1413a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ ω)
15 oen0 8206 . . . . . . . . . 10 (((ω ∈ On ∧ 2o ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 2o))
168, 12, 14, 15syl21anc 835 . . . . . . . . 9 (𝜑 → ∅ ∈ (ω ↑o 2o))
17 ondif1 8120 . . . . . . . . 9 ((ω ↑o 2o) ∈ (On ∖ 1o) ↔ ((ω ↑o 2o) ∈ On ∧ ∅ ∈ (ω ↑o 2o)))
1811, 16, 17sylanbrc 585 . . . . . . . 8 (𝜑 → (ω ↑o 2o) ∈ (On ∖ 1o))
19 infxpenc.3 . . . . . . . . 9 (𝜑𝑊 ∈ (On ∖ 1o))
2019eldifad 3948 . . . . . . . 8 (𝜑𝑊 ∈ On)
21 infxpenc.5 . . . . . . . 8 (𝜑 → (𝐹‘∅) = ∅)
22 infxpenc.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
23 infxpenc.h . . . . . . . 8 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑o 2o) CNF 𝑊))
244, 6, 18, 20, 8, 20, 21, 22, 23oef1o 9155 . . . . . . 7 (𝜑𝐻:((ω ↑o 2o) ↑o 𝑊)–1-1-onto→(ω ↑o 𝑊))
25 f1oi 6647 . . . . . . . . . 10 ( I ↾ ω):ω–1-1-onto→ω
2625a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ ω):ω–1-1-onto→ω)
27 infxpenc.x . . . . . . . . . . 11 𝑋 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))
28 infxpenc.y . . . . . . . . . . 11 𝑌 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧))
2927, 28omf1o 8614 . . . . . . . . . 10 ((𝑊 ∈ On ∧ 2o ∈ On) → (𝑌𝑋):(𝑊 ·o 2o)–1-1-onto→(2o ·o 𝑊))
3020, 9, 29sylancl 588 . . . . . . . . 9 (𝜑 → (𝑌𝑋):(𝑊 ·o 2o)–1-1-onto→(2o ·o 𝑊))
31 ondif1 8120 . . . . . . . . . . 11 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
327, 13, 31mpbir2an 709 . . . . . . . . . 10 ω ∈ (On ∖ 1o)
3332a1i 11 . . . . . . . . 9 (𝜑 → ω ∈ (On ∖ 1o))
34 omcl 8155 . . . . . . . . . 10 ((𝑊 ∈ On ∧ 2o ∈ On) → (𝑊 ·o 2o) ∈ On)
3520, 9, 34sylancl 588 . . . . . . . . 9 (𝜑 → (𝑊 ·o 2o) ∈ On)
36 omcl 8155 . . . . . . . . . 10 ((2o ∈ On ∧ 𝑊 ∈ On) → (2o ·o 𝑊) ∈ On)
3712, 20, 36syl2anc 586 . . . . . . . . 9 (𝜑 → (2o ·o 𝑊) ∈ On)
38 fvresi 6930 . . . . . . . . . 10 (∅ ∈ ω → (( I ↾ ω)‘∅) = ∅)
3913, 38mp1i 13 . . . . . . . . 9 (𝜑 → (( I ↾ ω)‘∅) = ∅)
40 infxpenc.l . . . . . . . . 9 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
41 infxpenc.j . . . . . . . . 9 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·o 2o)))
4226, 30, 33, 35, 8, 37, 39, 40, 41oef1o 9155 . . . . . . . 8 (𝜑𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o (2o ·o 𝑊)))
43 oeoe 8219 . . . . . . . . . 10 ((ω ∈ On ∧ 2o ∈ On ∧ 𝑊 ∈ On) → ((ω ↑o 2o) ↑o 𝑊) = (ω ↑o (2o ·o 𝑊)))
447, 12, 20, 43mp3an2i 1462 . . . . . . . . 9 (𝜑 → ((ω ↑o 2o) ↑o 𝑊) = (ω ↑o (2o ·o 𝑊)))
4544f1oeq3d 6607 . . . . . . . 8 (𝜑 → (𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→((ω ↑o 2o) ↑o 𝑊) ↔ 𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o (2o ·o 𝑊))))
4642, 45mpbird 259 . . . . . . 7 (𝜑𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→((ω ↑o 2o) ↑o 𝑊))
47 f1oco 6632 . . . . . . 7 ((𝐻:((ω ↑o 2o) ↑o 𝑊)–1-1-onto→(ω ↑o 𝑊) ∧ 𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→((ω ↑o 2o) ↑o 𝑊)) → (𝐻𝐽):(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o 𝑊))
4824, 46, 47syl2anc 586 . . . . . 6 (𝜑 → (𝐻𝐽):(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o 𝑊))
49 df-2o 8097 . . . . . . . . . . . 12 2o = suc 1o
5049oveq2i 7161 . . . . . . . . . . 11 (𝑊 ·o 2o) = (𝑊 ·o suc 1o)
51 1on 8103 . . . . . . . . . . . 12 1o ∈ On
52 omsuc 8145 . . . . . . . . . . . 12 ((𝑊 ∈ On ∧ 1o ∈ On) → (𝑊 ·o suc 1o) = ((𝑊 ·o 1o) +o 𝑊))
5320, 51, 52sylancl 588 . . . . . . . . . . 11 (𝜑 → (𝑊 ·o suc 1o) = ((𝑊 ·o 1o) +o 𝑊))
5450, 53syl5eq 2868 . . . . . . . . . 10 (𝜑 → (𝑊 ·o 2o) = ((𝑊 ·o 1o) +o 𝑊))
55 om1 8162 . . . . . . . . . . . 12 (𝑊 ∈ On → (𝑊 ·o 1o) = 𝑊)
5620, 55syl 17 . . . . . . . . . . 11 (𝜑 → (𝑊 ·o 1o) = 𝑊)
5756oveq1d 7165 . . . . . . . . . 10 (𝜑 → ((𝑊 ·o 1o) +o 𝑊) = (𝑊 +o 𝑊))
5854, 57eqtrd 2856 . . . . . . . . 9 (𝜑 → (𝑊 ·o 2o) = (𝑊 +o 𝑊))
5958oveq2d 7166 . . . . . . . 8 (𝜑 → (ω ↑o (𝑊 ·o 2o)) = (ω ↑o (𝑊 +o 𝑊)))
60 oeoa 8217 . . . . . . . . 9 ((ω ∈ On ∧ 𝑊 ∈ On ∧ 𝑊 ∈ On) → (ω ↑o (𝑊 +o 𝑊)) = ((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
617, 20, 20, 60mp3an2i 1462 . . . . . . . 8 (𝜑 → (ω ↑o (𝑊 +o 𝑊)) = ((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
6259, 61eqtrd 2856 . . . . . . 7 (𝜑 → (ω ↑o (𝑊 ·o 2o)) = ((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
6362f1oeq2d 6606 . . . . . 6 (𝜑 → ((𝐻𝐽):(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o 𝑊) ↔ (𝐻𝐽):((ω ↑o 𝑊) ·o (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊)))
6448, 63mpbid 234 . . . . 5 (𝜑 → (𝐻𝐽):((ω ↑o 𝑊) ·o (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊))
65 oecl 8156 . . . . . . 7 ((ω ∈ On ∧ 𝑊 ∈ On) → (ω ↑o 𝑊) ∈ On)
668, 20, 65syl2anc 586 . . . . . 6 (𝜑 → (ω ↑o 𝑊) ∈ On)
67 infxpenc.z . . . . . . 7 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))
6867omxpenlem 8612 . . . . . 6 (((ω ↑o 𝑊) ∈ On ∧ (ω ↑o 𝑊) ∈ On) → 𝑍:((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
6966, 66, 68syl2anc 586 . . . . 5 (𝜑𝑍:((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
70 f1oco 6632 . . . . 5 (((𝐻𝐽):((ω ↑o 𝑊) ·o (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊) ∧ 𝑍:((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω ↑o 𝑊))) → ((𝐻𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊))
7164, 69, 70syl2anc 586 . . . 4 (𝜑 → ((𝐻𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊))
72 f1of 6610 . . . . . . . . . 10 (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) → 𝑁:𝐴⟶(ω ↑o 𝑊))
731, 72syl 17 . . . . . . . . 9 (𝜑𝑁:𝐴⟶(ω ↑o 𝑊))
7473feqmptd 6728 . . . . . . . 8 (𝜑𝑁 = (𝑥𝐴 ↦ (𝑁𝑥)))
75 f1oeq1 6599 . . . . . . . 8 (𝑁 = (𝑥𝐴 ↦ (𝑁𝑥)) → (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) ↔ (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑o 𝑊)))
7674, 75syl 17 . . . . . . 7 (𝜑 → (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) ↔ (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑o 𝑊)))
771, 76mpbid 234 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑o 𝑊))
7873feqmptd 6728 . . . . . . . 8 (𝜑𝑁 = (𝑦𝐴 ↦ (𝑁𝑦)))
79 f1oeq1 6599 . . . . . . . 8 (𝑁 = (𝑦𝐴 ↦ (𝑁𝑦)) → (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) ↔ (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑o 𝑊)))
8078, 79syl 17 . . . . . . 7 (𝜑 → (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) ↔ (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑o 𝑊)))
811, 80mpbid 234 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑o 𝑊))
8277, 81xpf1o 8673 . . . . 5 (𝜑 → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)))
83 infxpenc.t . . . . . 6 𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩)
84 f1oeq1 6599 . . . . . 6 (𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩) → (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊))))
8583, 84ax-mp 5 . . . . 5 (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)))
8682, 85sylibr 236 . . . 4 (𝜑𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)))
87 f1oco 6632 . . . 4 ((((𝐻𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊) ∧ 𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊))) → (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊))
8871, 86, 87syl2anc 586 . . 3 (𝜑 → (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊))
89 f1oco 6632 . . 3 ((𝑁:(ω ↑o 𝑊)–1-1-onto𝐴 ∧ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊)) → (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
903, 88, 89syl2anc 586 . 2 (𝜑 → (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
91 infxpenc.g . . 3 𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
92 f1oeq1 6599 . . 3 (𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)) → (𝐺:(𝐴 × 𝐴)–1-1-onto𝐴 ↔ (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴))
9391, 92ax-mp 5 . 2 (𝐺:(𝐴 × 𝐴)–1-1-onto𝐴 ↔ (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
9490, 93sylibr 236 1 (𝜑𝐺:(𝐴 × 𝐴)–1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  {crab 3142  cdif 3933  wss 3936  c0 4291  cop 4567   class class class wbr 5059  cmpt 5139   I cid 5454   × cxp 5548  ccnv 5549  cres 5552  ccom 5554  Oncon0 6186  suc csuc 6188  wf 6346  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  cmpo 7152  ωcom 7574  1oc1o 8089  2oc2o 8090   +o coa 8093   ·o comu 8094  o coe 8095  m cmap 8400   finSupp cfsupp 8827   CNF ccnf 9118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-seqom 8078  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-oexp 8102  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-cnf 9119
This theorem is referenced by:  infxpenc2lem2  9440
  Copyright terms: Public domain W3C validator