Proof of Theorem infxpenc
Step | Hyp | Ref
| Expression |
1 | | infxpenc.6 |
. . . 4
⊢ (𝜑 → 𝑁:𝐴–1-1-onto→(ω ↑o 𝑊)) |
2 | | f1ocnv 6728 |
. . . 4
⊢ (𝑁:𝐴–1-1-onto→(ω ↑o 𝑊) → ◡𝑁:(ω ↑o 𝑊)–1-1-onto→𝐴) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → ◡𝑁:(ω ↑o 𝑊)–1-1-onto→𝐴) |
4 | | infxpenc.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(ω ↑o
2o)–1-1-onto→ω) |
5 | | f1oi 6754 |
. . . . . . . . 9
⊢ ( I
↾ 𝑊):𝑊–1-1-onto→𝑊 |
6 | 5 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ( I ↾ 𝑊):𝑊–1-1-onto→𝑊) |
7 | | omelon 9404 |
. . . . . . . . . . 11
⊢ ω
∈ On |
8 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ω ∈
On) |
9 | | 2on 8311 |
. . . . . . . . . 10
⊢
2o ∈ On |
10 | | oecl 8367 |
. . . . . . . . . 10
⊢ ((ω
∈ On ∧ 2o ∈ On) → (ω ↑o
2o) ∈ On) |
11 | 8, 9, 10 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (ω
↑o 2o) ∈ On) |
12 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 2o ∈
On) |
13 | | peano1 7735 |
. . . . . . . . . . 11
⊢ ∅
∈ ω |
14 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∅ ∈
ω) |
15 | | oen0 8417 |
. . . . . . . . . 10
⊢
(((ω ∈ On ∧ 2o ∈ On) ∧ ∅ ∈
ω) → ∅ ∈ (ω ↑o
2o)) |
16 | 8, 12, 14, 15 | syl21anc 835 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈ (ω
↑o 2o)) |
17 | | ondif1 8331 |
. . . . . . . . 9
⊢ ((ω
↑o 2o) ∈ (On ∖ 1o) ↔
((ω ↑o 2o) ∈ On ∧ ∅ ∈
(ω ↑o 2o))) |
18 | 11, 16, 17 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → (ω
↑o 2o) ∈ (On ∖
1o)) |
19 | | infxpenc.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ (On ∖
1o)) |
20 | 19 | eldifad 3899 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ On) |
21 | | infxpenc.5 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘∅) = ∅) |
22 | | infxpenc.k |
. . . . . . . 8
⊢ 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o
2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊)))) |
23 | | infxpenc.h |
. . . . . . . 8
⊢ 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ◡((ω ↑o 2o)
CNF 𝑊)) |
24 | 4, 6, 18, 20, 8, 20, 21, 22, 23 | oef1o 9456 |
. . . . . . 7
⊢ (𝜑 → 𝐻:((ω ↑o 2o)
↑o 𝑊)–1-1-onto→(ω ↑o 𝑊)) |
25 | | f1oi 6754 |
. . . . . . . . . 10
⊢ ( I
↾ ω):ω–1-1-onto→ω |
26 | 25 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ( I ↾
ω):ω–1-1-onto→ω) |
27 | | infxpenc.x |
. . . . . . . . . . 11
⊢ 𝑋 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) |
28 | | infxpenc.y |
. . . . . . . . . . 11
⊢ 𝑌 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) |
29 | 27, 28 | omf1o 8862 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ On ∧ 2o
∈ On) → (𝑌
∘ ◡𝑋):(𝑊 ·o
2o)–1-1-onto→(2o ·o 𝑊)) |
30 | 20, 9, 29 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∘ ◡𝑋):(𝑊 ·o
2o)–1-1-onto→(2o ·o 𝑊)) |
31 | | ondif1 8331 |
. . . . . . . . . . 11
⊢ (ω
∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅
∈ ω)) |
32 | 7, 13, 31 | mpbir2an 708 |
. . . . . . . . . 10
⊢ ω
∈ (On ∖ 1o) |
33 | 32 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ω ∈ (On ∖
1o)) |
34 | | omcl 8366 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ On ∧ 2o
∈ On) → (𝑊
·o 2o) ∈ On) |
35 | 20, 9, 34 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ·o 2o) ∈
On) |
36 | | omcl 8366 |
. . . . . . . . . 10
⊢
((2o ∈ On ∧ 𝑊 ∈ On) → (2o
·o 𝑊)
∈ On) |
37 | 12, 20, 36 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (2o
·o 𝑊)
∈ On) |
38 | | fvresi 7045 |
. . . . . . . . . 10
⊢ (∅
∈ ω → (( I ↾ ω)‘∅) =
∅) |
39 | 13, 38 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → (( I ↾
ω)‘∅) = ∅) |
40 | | infxpenc.l |
. . . . . . . . 9
⊢ 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o
2o)) ∣ 𝑥
finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡(𝑌 ∘ ◡𝑋)))) |
41 | | infxpenc.j |
. . . . . . . . 9
⊢ 𝐽 = (((ω CNF (2o
·o 𝑊))
∘ 𝐿) ∘ ◡(ω CNF (𝑊 ·o
2o))) |
42 | 26, 30, 33, 35, 8, 37, 39, 40, 41 | oef1o 9456 |
. . . . . . . 8
⊢ (𝜑 → 𝐽:(ω ↑o (𝑊 ·o
2o))–1-1-onto→(ω ↑o (2o
·o 𝑊))) |
43 | | oeoe 8430 |
. . . . . . . . . 10
⊢ ((ω
∈ On ∧ 2o ∈ On ∧ 𝑊 ∈ On) → ((ω
↑o 2o) ↑o 𝑊) = (ω ↑o
(2o ·o 𝑊))) |
44 | 7, 12, 20, 43 | mp3an2i 1465 |
. . . . . . . . 9
⊢ (𝜑 → ((ω
↑o 2o) ↑o 𝑊) = (ω ↑o
(2o ·o 𝑊))) |
45 | 44 | f1oeq3d 6713 |
. . . . . . . 8
⊢ (𝜑 → (𝐽:(ω ↑o (𝑊 ·o
2o))–1-1-onto→((ω ↑o 2o)
↑o 𝑊)
↔ 𝐽:(ω
↑o (𝑊
·o 2o))–1-1-onto→(ω ↑o (2o
·o 𝑊)))) |
46 | 42, 45 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → 𝐽:(ω ↑o (𝑊 ·o
2o))–1-1-onto→((ω ↑o 2o)
↑o 𝑊)) |
47 | | f1oco 6739 |
. . . . . . 7
⊢ ((𝐻:((ω ↑o
2o) ↑o 𝑊)–1-1-onto→(ω ↑o 𝑊) ∧ 𝐽:(ω ↑o (𝑊 ·o
2o))–1-1-onto→((ω ↑o 2o)
↑o 𝑊))
→ (𝐻 ∘ 𝐽):(ω ↑o
(𝑊 ·o
2o))–1-1-onto→(ω ↑o 𝑊)) |
48 | 24, 46, 47 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐻 ∘ 𝐽):(ω ↑o (𝑊 ·o
2o))–1-1-onto→(ω ↑o 𝑊)) |
49 | | df-2o 8298 |
. . . . . . . . . . . 12
⊢
2o = suc 1o |
50 | 49 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (𝑊 ·o
2o) = (𝑊
·o suc 1o) |
51 | | 1on 8309 |
. . . . . . . . . . . 12
⊢
1o ∈ On |
52 | | omsuc 8356 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ On ∧ 1o
∈ On) → (𝑊
·o suc 1o) = ((𝑊 ·o 1o)
+o 𝑊)) |
53 | 20, 51, 52 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑊 ·o suc 1o) =
((𝑊 ·o
1o) +o 𝑊)) |
54 | 50, 53 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑊 ·o 2o) =
((𝑊 ·o
1o) +o 𝑊)) |
55 | | om1 8373 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ On → (𝑊 ·o
1o) = 𝑊) |
56 | 20, 55 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑊 ·o 1o) = 𝑊) |
57 | 56 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑊 ·o 1o)
+o 𝑊) = (𝑊 +o 𝑊)) |
58 | 54, 57 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ·o 2o) =
(𝑊 +o 𝑊)) |
59 | 58 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → (ω
↑o (𝑊
·o 2o)) = (ω ↑o (𝑊 +o 𝑊))) |
60 | | oeoa 8428 |
. . . . . . . . 9
⊢ ((ω
∈ On ∧ 𝑊 ∈ On
∧ 𝑊 ∈ On) →
(ω ↑o (𝑊 +o 𝑊)) = ((ω ↑o 𝑊) ·o (ω
↑o 𝑊))) |
61 | 7, 20, 20, 60 | mp3an2i 1465 |
. . . . . . . 8
⊢ (𝜑 → (ω
↑o (𝑊
+o 𝑊)) =
((ω ↑o 𝑊) ·o (ω
↑o 𝑊))) |
62 | 59, 61 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (ω
↑o (𝑊
·o 2o)) = ((ω ↑o 𝑊) ·o (ω
↑o 𝑊))) |
63 | 62 | f1oeq2d 6712 |
. . . . . 6
⊢ (𝜑 → ((𝐻 ∘ 𝐽):(ω ↑o (𝑊 ·o
2o))–1-1-onto→(ω ↑o 𝑊) ↔ (𝐻 ∘ 𝐽):((ω ↑o 𝑊) ·o (ω
↑o 𝑊))–1-1-onto→(ω ↑o 𝑊))) |
64 | 48, 63 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐻 ∘ 𝐽):((ω ↑o 𝑊) ·o (ω
↑o 𝑊))–1-1-onto→(ω ↑o 𝑊)) |
65 | | oecl 8367 |
. . . . . . 7
⊢ ((ω
∈ On ∧ 𝑊 ∈
On) → (ω ↑o 𝑊) ∈ On) |
66 | 8, 20, 65 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (ω
↑o 𝑊)
∈ On) |
67 | | infxpenc.z |
. . . . . . 7
⊢ 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω
↑o 𝑊)
·o 𝑥)
+o 𝑦)) |
68 | 67 | omxpenlem 8860 |
. . . . . 6
⊢
(((ω ↑o 𝑊) ∈ On ∧ (ω
↑o 𝑊)
∈ On) → 𝑍:((ω ↑o 𝑊) × (ω
↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω
↑o 𝑊))) |
69 | 66, 66, 68 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → 𝑍:((ω ↑o 𝑊) × (ω
↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω
↑o 𝑊))) |
70 | | f1oco 6739 |
. . . . 5
⊢ (((𝐻 ∘ 𝐽):((ω ↑o 𝑊) ·o (ω
↑o 𝑊))–1-1-onto→(ω ↑o 𝑊) ∧ 𝑍:((ω ↑o 𝑊) × (ω
↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω
↑o 𝑊)))
→ ((𝐻 ∘ 𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω
↑o 𝑊))–1-1-onto→(ω ↑o 𝑊)) |
71 | 64, 69, 70 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝐻 ∘ 𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω
↑o 𝑊))–1-1-onto→(ω ↑o 𝑊)) |
72 | | f1of 6716 |
. . . . . . . . . 10
⊢ (𝑁:𝐴–1-1-onto→(ω ↑o 𝑊) → 𝑁:𝐴⟶(ω ↑o 𝑊)) |
73 | 1, 72 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁:𝐴⟶(ω ↑o 𝑊)) |
74 | 73 | feqmptd 6837 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐴 ↦ (𝑁‘𝑥))) |
75 | 74 | f1oeq1d 6711 |
. . . . . . 7
⊢ (𝜑 → (𝑁:𝐴–1-1-onto→(ω ↑o 𝑊) ↔ (𝑥 ∈ 𝐴 ↦ (𝑁‘𝑥)):𝐴–1-1-onto→(ω ↑o 𝑊))) |
76 | 1, 75 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝑁‘𝑥)):𝐴–1-1-onto→(ω ↑o 𝑊)) |
77 | 73 | feqmptd 6837 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 = (𝑦 ∈ 𝐴 ↦ (𝑁‘𝑦))) |
78 | 77 | f1oeq1d 6711 |
. . . . . . 7
⊢ (𝜑 → (𝑁:𝐴–1-1-onto→(ω ↑o 𝑊) ↔ (𝑦 ∈ 𝐴 ↦ (𝑁‘𝑦)):𝐴–1-1-onto→(ω ↑o 𝑊))) |
79 | 1, 78 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (𝑁‘𝑦)):𝐴–1-1-onto→(ω ↑o 𝑊)) |
80 | 76, 79 | xpf1o 8926 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ 〈(𝑁‘𝑥), (𝑁‘𝑦)〉):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊))) |
81 | | infxpenc.t |
. . . . . 6
⊢ 𝑇 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ 〈(𝑁‘𝑥), (𝑁‘𝑦)〉) |
82 | | f1oeq1 6704 |
. . . . . 6
⊢ (𝑇 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ 〈(𝑁‘𝑥), (𝑁‘𝑦)〉) → (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)) ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ 〈(𝑁‘𝑥), (𝑁‘𝑦)〉):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)))) |
83 | 81, 82 | ax-mp 5 |
. . . . 5
⊢ (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)) ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ 〈(𝑁‘𝑥), (𝑁‘𝑦)〉):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊))) |
84 | 80, 83 | sylibr 233 |
. . . 4
⊢ (𝜑 → 𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊))) |
85 | | f1oco 6739 |
. . . 4
⊢ ((((𝐻 ∘ 𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω
↑o 𝑊))–1-1-onto→(ω ↑o 𝑊) ∧ 𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊))) → (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊)) |
86 | 71, 84, 85 | syl2anc 584 |
. . 3
⊢ (𝜑 → (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊)) |
87 | | f1oco 6739 |
. . 3
⊢ ((◡𝑁:(ω ↑o 𝑊)–1-1-onto→𝐴 ∧ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊)) → (◡𝑁 ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto→𝐴) |
88 | 3, 86, 87 | syl2anc 584 |
. 2
⊢ (𝜑 → (◡𝑁 ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto→𝐴) |
89 | | infxpenc.g |
. . 3
⊢ 𝐺 = (◡𝑁 ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)) |
90 | | f1oeq1 6704 |
. . 3
⊢ (𝐺 = (◡𝑁 ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)) → (𝐺:(𝐴 × 𝐴)–1-1-onto→𝐴 ↔ (◡𝑁 ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto→𝐴)) |
91 | 89, 90 | ax-mp 5 |
. 2
⊢ (𝐺:(𝐴 × 𝐴)–1-1-onto→𝐴 ↔ (◡𝑁 ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto→𝐴) |
92 | 88, 91 | sylibr 233 |
1
⊢ (𝜑 → 𝐺:(𝐴 × 𝐴)–1-1-onto→𝐴) |