MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc Structured version   Visualization version   GIF version

Theorem infxpenc 9931
Description: A canonical version of infxpen 9927, by a completely different approach (although it uses infxpen 9927 via xpomen 9928). Using Cantor's normal form, we can show that 𝐴o 𝐵 respects equinumerosity (oef1o 9613), so that all the steps of (ω↑𝑊) · (ω↑𝑊) ≈ ω↑(2𝑊) ≈ (ω↑2)↑𝑊 ≈ ω↑𝑊 can be verified using bijections to do the ordinal commutations. (The assumption on 𝑁 can be satisfied using cnfcom3c 9621.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc.1 (𝜑𝐴 ∈ On)
infxpenc.2 (𝜑 → ω ⊆ 𝐴)
infxpenc.3 (𝜑𝑊 ∈ (On ∖ 1o))
infxpenc.4 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
infxpenc.5 (𝜑 → (𝐹‘∅) = ∅)
infxpenc.6 (𝜑𝑁:𝐴1-1-onto→(ω ↑o 𝑊))
infxpenc.k 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
infxpenc.h 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑o 2o) CNF 𝑊))
infxpenc.l 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
infxpenc.x 𝑋 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))
infxpenc.y 𝑌 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧))
infxpenc.j 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·o 2o)))
infxpenc.z 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))
infxpenc.t 𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩)
infxpenc.g 𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
Assertion
Ref Expression
infxpenc (𝜑𝐺:(𝐴 × 𝐴)–1-1-onto𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑤,𝑦,𝑧,𝑊   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐴(𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝐿(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑌(𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem infxpenc
StepHypRef Expression
1 infxpenc.6 . . . 4 (𝜑𝑁:𝐴1-1-onto→(ω ↑o 𝑊))
2 f1ocnv 6780 . . . 4 (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) → 𝑁:(ω ↑o 𝑊)–1-1-onto𝐴)
31, 2syl 17 . . 3 (𝜑𝑁:(ω ↑o 𝑊)–1-1-onto𝐴)
4 infxpenc.4 . . . . . . . 8 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
5 f1oi 6806 . . . . . . . . 9 ( I ↾ 𝑊):𝑊1-1-onto𝑊
65a1i 11 . . . . . . . 8 (𝜑 → ( I ↾ 𝑊):𝑊1-1-onto𝑊)
7 omelon 9561 . . . . . . . . . . 11 ω ∈ On
87a1i 11 . . . . . . . . . 10 (𝜑 → ω ∈ On)
9 2on 8408 . . . . . . . . . 10 2o ∈ On
10 oecl 8462 . . . . . . . . . 10 ((ω ∈ On ∧ 2o ∈ On) → (ω ↑o 2o) ∈ On)
118, 9, 10sylancl 586 . . . . . . . . 9 (𝜑 → (ω ↑o 2o) ∈ On)
129a1i 11 . . . . . . . . . 10 (𝜑 → 2o ∈ On)
13 peano1 7829 . . . . . . . . . . 11 ∅ ∈ ω
1413a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ ω)
15 oen0 8511 . . . . . . . . . 10 (((ω ∈ On ∧ 2o ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 2o))
168, 12, 14, 15syl21anc 837 . . . . . . . . 9 (𝜑 → ∅ ∈ (ω ↑o 2o))
17 ondif1 8426 . . . . . . . . 9 ((ω ↑o 2o) ∈ (On ∖ 1o) ↔ ((ω ↑o 2o) ∈ On ∧ ∅ ∈ (ω ↑o 2o)))
1811, 16, 17sylanbrc 583 . . . . . . . 8 (𝜑 → (ω ↑o 2o) ∈ (On ∖ 1o))
19 infxpenc.3 . . . . . . . . 9 (𝜑𝑊 ∈ (On ∖ 1o))
2019eldifad 3917 . . . . . . . 8 (𝜑𝑊 ∈ On)
21 infxpenc.5 . . . . . . . 8 (𝜑 → (𝐹‘∅) = ∅)
22 infxpenc.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
23 infxpenc.h . . . . . . . 8 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑o 2o) CNF 𝑊))
244, 6, 18, 20, 8, 20, 21, 22, 23oef1o 9613 . . . . . . 7 (𝜑𝐻:((ω ↑o 2o) ↑o 𝑊)–1-1-onto→(ω ↑o 𝑊))
25 f1oi 6806 . . . . . . . . . 10 ( I ↾ ω):ω–1-1-onto→ω
2625a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ ω):ω–1-1-onto→ω)
27 infxpenc.x . . . . . . . . . . 11 𝑋 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))
28 infxpenc.y . . . . . . . . . . 11 𝑌 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧))
2927, 28omf1o 9004 . . . . . . . . . 10 ((𝑊 ∈ On ∧ 2o ∈ On) → (𝑌𝑋):(𝑊 ·o 2o)–1-1-onto→(2o ·o 𝑊))
3020, 9, 29sylancl 586 . . . . . . . . 9 (𝜑 → (𝑌𝑋):(𝑊 ·o 2o)–1-1-onto→(2o ·o 𝑊))
31 ondif1 8426 . . . . . . . . . . 11 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
327, 13, 31mpbir2an 711 . . . . . . . . . 10 ω ∈ (On ∖ 1o)
3332a1i 11 . . . . . . . . 9 (𝜑 → ω ∈ (On ∖ 1o))
34 omcl 8461 . . . . . . . . . 10 ((𝑊 ∈ On ∧ 2o ∈ On) → (𝑊 ·o 2o) ∈ On)
3520, 9, 34sylancl 586 . . . . . . . . 9 (𝜑 → (𝑊 ·o 2o) ∈ On)
36 omcl 8461 . . . . . . . . . 10 ((2o ∈ On ∧ 𝑊 ∈ On) → (2o ·o 𝑊) ∈ On)
3712, 20, 36syl2anc 584 . . . . . . . . 9 (𝜑 → (2o ·o 𝑊) ∈ On)
38 fvresi 7113 . . . . . . . . . 10 (∅ ∈ ω → (( I ↾ ω)‘∅) = ∅)
3913, 38mp1i 13 . . . . . . . . 9 (𝜑 → (( I ↾ ω)‘∅) = ∅)
40 infxpenc.l . . . . . . . . 9 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
41 infxpenc.j . . . . . . . . 9 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·o 2o)))
4226, 30, 33, 35, 8, 37, 39, 40, 41oef1o 9613 . . . . . . . 8 (𝜑𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o (2o ·o 𝑊)))
43 oeoe 8524 . . . . . . . . . 10 ((ω ∈ On ∧ 2o ∈ On ∧ 𝑊 ∈ On) → ((ω ↑o 2o) ↑o 𝑊) = (ω ↑o (2o ·o 𝑊)))
447, 12, 20, 43mp3an2i 1468 . . . . . . . . 9 (𝜑 → ((ω ↑o 2o) ↑o 𝑊) = (ω ↑o (2o ·o 𝑊)))
4544f1oeq3d 6765 . . . . . . . 8 (𝜑 → (𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→((ω ↑o 2o) ↑o 𝑊) ↔ 𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o (2o ·o 𝑊))))
4642, 45mpbird 257 . . . . . . 7 (𝜑𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→((ω ↑o 2o) ↑o 𝑊))
47 f1oco 6791 . . . . . . 7 ((𝐻:((ω ↑o 2o) ↑o 𝑊)–1-1-onto→(ω ↑o 𝑊) ∧ 𝐽:(ω ↑o (𝑊 ·o 2o))–1-1-onto→((ω ↑o 2o) ↑o 𝑊)) → (𝐻𝐽):(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o 𝑊))
4824, 46, 47syl2anc 584 . . . . . 6 (𝜑 → (𝐻𝐽):(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o 𝑊))
49 df-2o 8396 . . . . . . . . . . . 12 2o = suc 1o
5049oveq2i 7364 . . . . . . . . . . 11 (𝑊 ·o 2o) = (𝑊 ·o suc 1o)
51 1on 8407 . . . . . . . . . . . 12 1o ∈ On
52 omsuc 8451 . . . . . . . . . . . 12 ((𝑊 ∈ On ∧ 1o ∈ On) → (𝑊 ·o suc 1o) = ((𝑊 ·o 1o) +o 𝑊))
5320, 51, 52sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝑊 ·o suc 1o) = ((𝑊 ·o 1o) +o 𝑊))
5450, 53eqtrid 2776 . . . . . . . . . 10 (𝜑 → (𝑊 ·o 2o) = ((𝑊 ·o 1o) +o 𝑊))
55 om1 8467 . . . . . . . . . . . 12 (𝑊 ∈ On → (𝑊 ·o 1o) = 𝑊)
5620, 55syl 17 . . . . . . . . . . 11 (𝜑 → (𝑊 ·o 1o) = 𝑊)
5756oveq1d 7368 . . . . . . . . . 10 (𝜑 → ((𝑊 ·o 1o) +o 𝑊) = (𝑊 +o 𝑊))
5854, 57eqtrd 2764 . . . . . . . . 9 (𝜑 → (𝑊 ·o 2o) = (𝑊 +o 𝑊))
5958oveq2d 7369 . . . . . . . 8 (𝜑 → (ω ↑o (𝑊 ·o 2o)) = (ω ↑o (𝑊 +o 𝑊)))
60 oeoa 8522 . . . . . . . . 9 ((ω ∈ On ∧ 𝑊 ∈ On ∧ 𝑊 ∈ On) → (ω ↑o (𝑊 +o 𝑊)) = ((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
617, 20, 20, 60mp3an2i 1468 . . . . . . . 8 (𝜑 → (ω ↑o (𝑊 +o 𝑊)) = ((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
6259, 61eqtrd 2764 . . . . . . 7 (𝜑 → (ω ↑o (𝑊 ·o 2o)) = ((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
6362f1oeq2d 6764 . . . . . 6 (𝜑 → ((𝐻𝐽):(ω ↑o (𝑊 ·o 2o))–1-1-onto→(ω ↑o 𝑊) ↔ (𝐻𝐽):((ω ↑o 𝑊) ·o (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊)))
6448, 63mpbid 232 . . . . 5 (𝜑 → (𝐻𝐽):((ω ↑o 𝑊) ·o (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊))
65 oecl 8462 . . . . . . 7 ((ω ∈ On ∧ 𝑊 ∈ On) → (ω ↑o 𝑊) ∈ On)
668, 20, 65syl2anc 584 . . . . . 6 (𝜑 → (ω ↑o 𝑊) ∈ On)
67 infxpenc.z . . . . . . 7 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))
6867omxpenlem 9002 . . . . . 6 (((ω ↑o 𝑊) ∈ On ∧ (ω ↑o 𝑊) ∈ On) → 𝑍:((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
6966, 66, 68syl2anc 584 . . . . 5 (𝜑𝑍:((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω ↑o 𝑊)))
70 f1oco 6791 . . . . 5 (((𝐻𝐽):((ω ↑o 𝑊) ·o (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊) ∧ 𝑍:((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→((ω ↑o 𝑊) ·o (ω ↑o 𝑊))) → ((𝐻𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊))
7164, 69, 70syl2anc 584 . . . 4 (𝜑 → ((𝐻𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊))
72 f1of 6768 . . . . . . . . . 10 (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) → 𝑁:𝐴⟶(ω ↑o 𝑊))
731, 72syl 17 . . . . . . . . 9 (𝜑𝑁:𝐴⟶(ω ↑o 𝑊))
7473feqmptd 6895 . . . . . . . 8 (𝜑𝑁 = (𝑥𝐴 ↦ (𝑁𝑥)))
7574f1oeq1d 6763 . . . . . . 7 (𝜑 → (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) ↔ (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑o 𝑊)))
761, 75mpbid 232 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑o 𝑊))
7773feqmptd 6895 . . . . . . . 8 (𝜑𝑁 = (𝑦𝐴 ↦ (𝑁𝑦)))
7877f1oeq1d 6763 . . . . . . 7 (𝜑 → (𝑁:𝐴1-1-onto→(ω ↑o 𝑊) ↔ (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑o 𝑊)))
791, 78mpbid 232 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑o 𝑊))
8076, 79xpf1o 9063 . . . . 5 (𝜑 → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)))
81 infxpenc.t . . . . . 6 𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩)
82 f1oeq1 6756 . . . . . 6 (𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩) → (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊))))
8381, 82ax-mp 5 . . . . 5 (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)))
8480, 83sylibr 234 . . . 4 (𝜑𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊)))
85 f1oco 6791 . . . 4 ((((𝐻𝐽) ∘ 𝑍):((ω ↑o 𝑊) × (ω ↑o 𝑊))–1-1-onto→(ω ↑o 𝑊) ∧ 𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑o 𝑊) × (ω ↑o 𝑊))) → (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊))
8671, 84, 85syl2anc 584 . . 3 (𝜑 → (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊))
87 f1oco 6791 . . 3 ((𝑁:(ω ↑o 𝑊)–1-1-onto𝐴 ∧ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑o 𝑊)) → (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
883, 86, 87syl2anc 584 . 2 (𝜑 → (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
89 infxpenc.g . . 3 𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
90 f1oeq1 6756 . . 3 (𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)) → (𝐺:(𝐴 × 𝐴)–1-1-onto𝐴 ↔ (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴))
9189, 90ax-mp 5 . 2 (𝐺:(𝐴 × 𝐴)–1-1-onto𝐴 ↔ (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
9288, 91sylibr 234 1 (𝜑𝐺:(𝐴 × 𝐴)–1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3396  cdif 3902  wss 3905  c0 4286  cop 4585   class class class wbr 5095  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  cres 5625  ccom 5627  Oncon0 6311  suc csuc 6313  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cmpo 7355  ωcom 7806  1oc1o 8388  2oc2o 8389   +o coa 8392   ·o comu 8393  o coe 8394  m cmap 8760   finSupp cfsupp 9270   CNF ccnf 9576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-seqom 8377  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-oexp 8401  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-cnf 9577
This theorem is referenced by:  infxpenc2lem2  9933
  Copyright terms: Public domain W3C validator