Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones20 Structured version   Visualization version   GIF version

Theorem sticksstones20 41441
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024.)
Hypotheses
Ref Expression
sticksstones20.1 (𝜑𝑁 ∈ ℕ0)
sticksstones20.2 (𝜑𝑆 ∈ Fin)
sticksstones20.3 (𝜑𝐾 ∈ ℕ)
sticksstones20.4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones20.5 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones20.6 (𝜑 → (♯‘𝑆) = 𝐾)
Assertion
Ref Expression
sticksstones20 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   ,𝑁,𝑖   𝑆,,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝜑()   𝐴(𝑔,)   𝐵(𝑔,)   𝑆(𝑔)   𝐾()

Proof of Theorem sticksstones20
Dummy variables 𝑎 𝑏 𝑝 𝑥 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones20.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2 isfinite4 14318 . . . . . . . 8 (𝑆 ∈ Fin ↔ (1...(♯‘𝑆)) ≈ 𝑆)
3 bren 8944 . . . . . . . 8 ((1...(♯‘𝑆)) ≈ 𝑆 ↔ ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
42, 3sylbb 218 . . . . . . 7 (𝑆 ∈ Fin → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
51, 4syl 17 . . . . . 6 (𝜑 → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
6 sticksstones20.6 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) = 𝐾)
76oveq2d 7417 . . . . . . . . 9 (𝜑 → (1...(♯‘𝑆)) = (1...𝐾))
87f1oeq2d 6819 . . . . . . . 8 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
98biimpd 228 . . . . . . 7 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
109eximdv 1912 . . . . . 6 (𝜑 → (∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆))
115, 10mpd 15 . . . . 5 (𝜑 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆)
12 sticksstones20.4 . . . . . . . . . . 11 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
1312a1i 11 . . . . . . . . . 10 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
14 fzfid 13934 . . . . . . . . . . . 12 (𝜑 → (1...𝐾) ∈ Fin)
15 nn0ex 12474 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 mapex 8821 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
1814, 16, 17syl2anc 583 . . . . . . . . . . 11 (𝜑 → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
19 simprl 768 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)) → 𝑔:(1...𝐾)⟶ℕ0)
2019ex 412 . . . . . . . . . . . 12 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) → 𝑔:(1...𝐾)⟶ℕ0))
2120ss2abdv 4052 . . . . . . . . . . 11 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...𝐾)⟶ℕ0})
2218, 21ssexd 5314 . . . . . . . . . 10 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ∈ V)
2313, 22eqeltrd 2825 . . . . . . . . 9 (𝜑𝐴 ∈ V)
2423adantr 480 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴 ∈ V)
2524mptexd 7217 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) ∈ V)
26 sticksstones20.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2726adantr 480 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑁 ∈ ℕ0)
28 sticksstones20.3 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
2928nnnn0d 12528 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
3029adantr 480 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐾 ∈ ℕ0)
31 sticksstones20.5 . . . . . . . 8 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32 simpr 484 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑝:(1...𝐾)–1-1-onto𝑆)
33 eqid 2724 . . . . . . . 8 (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥))))
34 eqid 2724 . . . . . . . 8 (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦)))) = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦))))
3527, 30, 12, 31, 32, 33, 34sticksstones19 41440 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵)
36 f1oeq1 6811 . . . . . . 7 (𝑞 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) → (𝑞:𝐴1-1-onto𝐵 ↔ (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵))
3725, 35, 36spcedv 3580 . . . . . 6 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → ∃𝑞 𝑞:𝐴1-1-onto𝐵)
38 bren 8944 . . . . . 6 (𝐴𝐵 ↔ ∃𝑞 𝑞:𝐴1-1-onto𝐵)
3937, 38sylibr 233 . . . . 5 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴𝐵)
4011, 39exlimddv 1930 . . . 4 (𝜑𝐴𝐵)
41 hasheni 14304 . . . 4 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
4240, 41syl 17 . . 3 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
4342eqcomd 2730 . 2 (𝜑 → (♯‘𝐵) = (♯‘𝐴))
4426, 28, 12sticksstones16 41437 . 2 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
4543, 44eqtrd 2764 1 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  {cab 2701  Vcvv 3466   class class class wbr 5138  cmpt 5221  ccnv 5665  wf 6529  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  cen 8931  Fincfn 8934  1c1 11106   + caddc 11108  cmin 11440  cn 12208  0cn0 12468  ...cfz 13480  Ccbc 14258  chash 14286  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-oi 9500  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  sticksstones21  41442
  Copyright terms: Public domain W3C validator