Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones20 Structured version   Visualization version   GIF version

Theorem sticksstones20 40122
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024.)
Hypotheses
Ref Expression
sticksstones20.1 (𝜑𝑁 ∈ ℕ0)
sticksstones20.2 (𝜑𝑆 ∈ Fin)
sticksstones20.3 (𝜑𝐾 ∈ ℕ)
sticksstones20.4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones20.5 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones20.6 (𝜑 → (♯‘𝑆) = 𝐾)
Assertion
Ref Expression
sticksstones20 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   ,𝑁,𝑖   𝑆,,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝜑()   𝐴(𝑔,)   𝐵(𝑔,)   𝑆(𝑔)   𝐾()

Proof of Theorem sticksstones20
Dummy variables 𝑎 𝑏 𝑝 𝑥 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones20.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2 isfinite4 14077 . . . . . . . 8 (𝑆 ∈ Fin ↔ (1...(♯‘𝑆)) ≈ 𝑆)
3 bren 8743 . . . . . . . 8 ((1...(♯‘𝑆)) ≈ 𝑆 ↔ ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
42, 3sylbb 218 . . . . . . 7 (𝑆 ∈ Fin → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
51, 4syl 17 . . . . . 6 (𝜑 → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
6 sticksstones20.6 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) = 𝐾)
76oveq2d 7291 . . . . . . . . 9 (𝜑 → (1...(♯‘𝑆)) = (1...𝐾))
87f1oeq2d 6712 . . . . . . . 8 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
98biimpd 228 . . . . . . 7 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
109eximdv 1920 . . . . . 6 (𝜑 → (∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆))
115, 10mpd 15 . . . . 5 (𝜑 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆)
12 sticksstones20.4 . . . . . . . . . . 11 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
1312a1i 11 . . . . . . . . . 10 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
14 fzfid 13693 . . . . . . . . . . . 12 (𝜑 → (1...𝐾) ∈ Fin)
15 nn0ex 12239 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 mapex 8621 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
1814, 16, 17syl2anc 584 . . . . . . . . . . 11 (𝜑 → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
19 simprl 768 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)) → 𝑔:(1...𝐾)⟶ℕ0)
2019ex 413 . . . . . . . . . . . 12 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) → 𝑔:(1...𝐾)⟶ℕ0))
2120ss2abdv 3997 . . . . . . . . . . 11 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...𝐾)⟶ℕ0})
2218, 21ssexd 5248 . . . . . . . . . 10 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ∈ V)
2313, 22eqeltrd 2839 . . . . . . . . 9 (𝜑𝐴 ∈ V)
2423adantr 481 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴 ∈ V)
2524mptexd 7100 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) ∈ V)
26 sticksstones20.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2726adantr 481 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑁 ∈ ℕ0)
28 sticksstones20.3 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
2928nnnn0d 12293 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
3029adantr 481 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐾 ∈ ℕ0)
31 sticksstones20.5 . . . . . . . 8 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32 simpr 485 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑝:(1...𝐾)–1-1-onto𝑆)
33 eqid 2738 . . . . . . . 8 (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥))))
34 eqid 2738 . . . . . . . 8 (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦)))) = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦))))
3527, 30, 12, 31, 32, 33, 34sticksstones19 40121 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵)
36 f1oeq1 6704 . . . . . . 7 (𝑞 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) → (𝑞:𝐴1-1-onto𝐵 ↔ (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵))
3725, 35, 36spcedv 3537 . . . . . 6 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → ∃𝑞 𝑞:𝐴1-1-onto𝐵)
38 bren 8743 . . . . . 6 (𝐴𝐵 ↔ ∃𝑞 𝑞:𝐴1-1-onto𝐵)
3937, 38sylibr 233 . . . . 5 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴𝐵)
4011, 39exlimddv 1938 . . . 4 (𝜑𝐴𝐵)
41 hasheni 14062 . . . 4 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
4240, 41syl 17 . . 3 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
4342eqcomd 2744 . 2 (𝜑 → (♯‘𝐵) = (♯‘𝐴))
4426, 28, 12sticksstones16 40118 . 2 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
4543, 44eqtrd 2778 1 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  Vcvv 3432   class class class wbr 5074  cmpt 5157  ccnv 5588  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cen 8730  Fincfn 8733  1c1 10872   + caddc 10874  cmin 11205  cn 11973  0cn0 12233  ...cfz 13239  Ccbc 14016  chash 14044  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  sticksstones21  40123
  Copyright terms: Public domain W3C validator