Step | Hyp | Ref
| Expression |
1 | | sticksstones20.2 |
. . . . . . 7
β’ (π β π β Fin) |
2 | | isfinite4 14318 |
. . . . . . . 8
β’ (π β Fin β
(1...(β―βπ))
β π) |
3 | | bren 8945 |
. . . . . . . 8
β’
((1...(β―βπ)) β π β βπ π:(1...(β―βπ))β1-1-ontoβπ) |
4 | 2, 3 | sylbb 218 |
. . . . . . 7
β’ (π β Fin β βπ π:(1...(β―βπ))β1-1-ontoβπ) |
5 | 1, 4 | syl 17 |
. . . . . 6
β’ (π β βπ π:(1...(β―βπ))β1-1-ontoβπ) |
6 | | sticksstones20.6 |
. . . . . . . . . 10
β’ (π β (β―βπ) = πΎ) |
7 | 6 | oveq2d 7421 |
. . . . . . . . 9
β’ (π β (1...(β―βπ)) = (1...πΎ)) |
8 | 7 | f1oeq2d 6826 |
. . . . . . . 8
β’ (π β (π:(1...(β―βπ))β1-1-ontoβπ β π:(1...πΎ)β1-1-ontoβπ)) |
9 | 8 | biimpd 228 |
. . . . . . 7
β’ (π β (π:(1...(β―βπ))β1-1-ontoβπ β π:(1...πΎ)β1-1-ontoβπ)) |
10 | 9 | eximdv 1920 |
. . . . . 6
β’ (π β (βπ π:(1...(β―βπ))β1-1-ontoβπ β βπ π:(1...πΎ)β1-1-ontoβπ)) |
11 | 5, 10 | mpd 15 |
. . . . 5
β’ (π β βπ π:(1...πΎ)β1-1-ontoβπ) |
12 | | sticksstones20.4 |
. . . . . . . . . . 11
β’ π΄ = {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)} |
13 | 12 | a1i 11 |
. . . . . . . . . 10
β’ (π β π΄ = {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)}) |
14 | | fzfid 13934 |
. . . . . . . . . . . 12
β’ (π β (1...πΎ) β Fin) |
15 | | nn0ex 12474 |
. . . . . . . . . . . . 13
β’
β0 β V |
16 | 15 | a1i 11 |
. . . . . . . . . . . 12
β’ (π β β0 β
V) |
17 | | mapex 8822 |
. . . . . . . . . . . 12
β’
(((1...πΎ) β Fin
β§ β0 β V) β {π β£ π:(1...πΎ)βΆβ0} β
V) |
18 | 14, 16, 17 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β {π β£ π:(1...πΎ)βΆβ0} β
V) |
19 | | simprl 769 |
. . . . . . . . . . . . 13
β’ ((π β§ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)) β π:(1...πΎ)βΆβ0) |
20 | 19 | ex 413 |
. . . . . . . . . . . 12
β’ (π β ((π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π) β π:(1...πΎ)βΆβ0)) |
21 | 20 | ss2abdv 4059 |
. . . . . . . . . . 11
β’ (π β {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)} β {π β£ π:(1...πΎ)βΆβ0}) |
22 | 18, 21 | ssexd 5323 |
. . . . . . . . . 10
β’ (π β {π β£ (π:(1...πΎ)βΆβ0 β§
Ξ£π β (1...πΎ)(πβπ) = π)} β V) |
23 | 13, 22 | eqeltrd 2833 |
. . . . . . . . 9
β’ (π β π΄ β V) |
24 | 23 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π:(1...πΎ)β1-1-ontoβπ) β π΄ β V) |
25 | 24 | mptexd 7222 |
. . . . . . 7
β’ ((π β§ π:(1...πΎ)β1-1-ontoβπ) β (π β π΄ β¦ (π₯ β π β¦ (πβ(β‘πβπ₯)))) β V) |
26 | | sticksstones20.1 |
. . . . . . . . 9
β’ (π β π β
β0) |
27 | 26 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π:(1...πΎ)β1-1-ontoβπ) β π β
β0) |
28 | | sticksstones20.3 |
. . . . . . . . . 10
β’ (π β πΎ β β) |
29 | 28 | nnnn0d 12528 |
. . . . . . . . 9
β’ (π β πΎ β
β0) |
30 | 29 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π:(1...πΎ)β1-1-ontoβπ) β πΎ β
β0) |
31 | | sticksstones20.5 |
. . . . . . . 8
β’ π΅ = {β β£ (β:πβΆβ0 β§
Ξ£π β π (ββπ) = π)} |
32 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ π:(1...πΎ)β1-1-ontoβπ) β π:(1...πΎ)β1-1-ontoβπ) |
33 | | eqid 2732 |
. . . . . . . 8
β’ (π β π΄ β¦ (π₯ β π β¦ (πβ(β‘πβπ₯)))) = (π β π΄ β¦ (π₯ β π β¦ (πβ(β‘πβπ₯)))) |
34 | | eqid 2732 |
. . . . . . . 8
β’ (π β π΅ β¦ (π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))) = (π β π΅ β¦ (π¦ β (1...πΎ) β¦ (πβ(πβπ¦)))) |
35 | 27, 30, 12, 31, 32, 33, 34 | sticksstones19 40969 |
. . . . . . 7
β’ ((π β§ π:(1...πΎ)β1-1-ontoβπ) β (π β π΄ β¦ (π₯ β π β¦ (πβ(β‘πβπ₯)))):π΄β1-1-ontoβπ΅) |
36 | | f1oeq1 6818 |
. . . . . . 7
β’ (π = (π β π΄ β¦ (π₯ β π β¦ (πβ(β‘πβπ₯)))) β (π:π΄β1-1-ontoβπ΅ β (π β π΄ β¦ (π₯ β π β¦ (πβ(β‘πβπ₯)))):π΄β1-1-ontoβπ΅)) |
37 | 25, 35, 36 | spcedv 3588 |
. . . . . 6
β’ ((π β§ π:(1...πΎ)β1-1-ontoβπ) β βπ π:π΄β1-1-ontoβπ΅) |
38 | | bren 8945 |
. . . . . 6
β’ (π΄ β π΅ β βπ π:π΄β1-1-ontoβπ΅) |
39 | 37, 38 | sylibr 233 |
. . . . 5
β’ ((π β§ π:(1...πΎ)β1-1-ontoβπ) β π΄ β π΅) |
40 | 11, 39 | exlimddv 1938 |
. . . 4
β’ (π β π΄ β π΅) |
41 | | hasheni 14304 |
. . . 4
β’ (π΄ β π΅ β (β―βπ΄) = (β―βπ΅)) |
42 | 40, 41 | syl 17 |
. . 3
β’ (π β (β―βπ΄) = (β―βπ΅)) |
43 | 42 | eqcomd 2738 |
. 2
β’ (π β (β―βπ΅) = (β―βπ΄)) |
44 | 26, 28, 12 | sticksstones16 40966 |
. 2
β’ (π β (β―βπ΄) = ((π + (πΎ β 1))C(πΎ β 1))) |
45 | 43, 44 | eqtrd 2772 |
1
β’ (π β (β―βπ΅) = ((π + (πΎ β 1))C(πΎ β 1))) |