Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones20 Structured version   Visualization version   GIF version

Theorem sticksstones20 42162
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024.)
Hypotheses
Ref Expression
sticksstones20.1 (𝜑𝑁 ∈ ℕ0)
sticksstones20.2 (𝜑𝑆 ∈ Fin)
sticksstones20.3 (𝜑𝐾 ∈ ℕ)
sticksstones20.4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones20.5 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones20.6 (𝜑 → (♯‘𝑆) = 𝐾)
Assertion
Ref Expression
sticksstones20 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   ,𝑁,𝑖   𝑆,,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝜑()   𝐴(𝑔,)   𝐵(𝑔,)   𝑆(𝑔)   𝐾()

Proof of Theorem sticksstones20
Dummy variables 𝑎 𝑏 𝑝 𝑥 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones20.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2 isfinite4 14407 . . . . . . . 8 (𝑆 ∈ Fin ↔ (1...(♯‘𝑆)) ≈ 𝑆)
3 bren 9003 . . . . . . . 8 ((1...(♯‘𝑆)) ≈ 𝑆 ↔ ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
42, 3sylbb 219 . . . . . . 7 (𝑆 ∈ Fin → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
51, 4syl 17 . . . . . 6 (𝜑 → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
6 sticksstones20.6 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) = 𝐾)
76oveq2d 7454 . . . . . . . . 9 (𝜑 → (1...(♯‘𝑆)) = (1...𝐾))
87f1oeq2d 6852 . . . . . . . 8 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
98biimpd 229 . . . . . . 7 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
109eximdv 1917 . . . . . 6 (𝜑 → (∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆))
115, 10mpd 15 . . . . 5 (𝜑 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆)
12 sticksstones20.4 . . . . . . . . . . 11 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
1312a1i 11 . . . . . . . . . 10 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
14 fzfid 14020 . . . . . . . . . . . 12 (𝜑 → (1...𝐾) ∈ Fin)
15 nn0ex 12539 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 mapex 7971 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
1814, 16, 17syl2anc 584 . . . . . . . . . . 11 (𝜑 → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
19 simprl 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)) → 𝑔:(1...𝐾)⟶ℕ0)
2019ex 412 . . . . . . . . . . . 12 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) → 𝑔:(1...𝐾)⟶ℕ0))
2120ss2abdv 4079 . . . . . . . . . . 11 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...𝐾)⟶ℕ0})
2218, 21ssexd 5333 . . . . . . . . . 10 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ∈ V)
2313, 22eqeltrd 2841 . . . . . . . . 9 (𝜑𝐴 ∈ V)
2423adantr 480 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴 ∈ V)
2524mptexd 7251 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) ∈ V)
26 sticksstones20.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2726adantr 480 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑁 ∈ ℕ0)
28 sticksstones20.3 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
2928nnnn0d 12594 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
3029adantr 480 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐾 ∈ ℕ0)
31 sticksstones20.5 . . . . . . . 8 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32 simpr 484 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑝:(1...𝐾)–1-1-onto𝑆)
33 eqid 2737 . . . . . . . 8 (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥))))
34 eqid 2737 . . . . . . . 8 (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦)))) = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦))))
3527, 30, 12, 31, 32, 33, 34sticksstones19 42161 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵)
36 f1oeq1 6844 . . . . . . 7 (𝑞 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) → (𝑞:𝐴1-1-onto𝐵 ↔ (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵))
3725, 35, 36spcedv 3601 . . . . . 6 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → ∃𝑞 𝑞:𝐴1-1-onto𝐵)
38 bren 9003 . . . . . 6 (𝐴𝐵 ↔ ∃𝑞 𝑞:𝐴1-1-onto𝐵)
3937, 38sylibr 234 . . . . 5 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴𝐵)
4011, 39exlimddv 1935 . . . 4 (𝜑𝐴𝐵)
41 hasheni 14393 . . . 4 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
4240, 41syl 17 . . 3 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
4342eqcomd 2743 . 2 (𝜑 → (♯‘𝐵) = (♯‘𝐴))
4426, 28, 12sticksstones16 42158 . 2 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
4543, 44eqtrd 2777 1 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2108  {cab 2714  Vcvv 3481   class class class wbr 5151  cmpt 5234  ccnv 5692  wf 6565  1-1-ontowf1o 6568  cfv 6569  (class class class)co 7438  cen 8990  Fincfn 8993  1c1 11163   + caddc 11165  cmin 11499  cn 12273  0cn0 12533  ...cfz 13553  Ccbc 14347  chash 14375  Σcsu 15728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-oadd 8518  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-oi 9557  df-dju 9948  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-z 12621  df-uz 12886  df-rp 13042  df-ico 13399  df-fz 13554  df-fzo 13701  df-seq 14049  df-exp 14109  df-fac 14319  df-bc 14348  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-sum 15729
This theorem is referenced by:  sticksstones21  42163
  Copyright terms: Public domain W3C validator