Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones20 Structured version   Visualization version   GIF version

Theorem sticksstones20 39879
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024.)
Hypotheses
Ref Expression
sticksstones20.1 (𝜑𝑁 ∈ ℕ0)
sticksstones20.2 (𝜑𝑆 ∈ Fin)
sticksstones20.3 (𝜑𝐾 ∈ ℕ)
sticksstones20.4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones20.5 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones20.6 (𝜑 → (♯‘𝑆) = 𝐾)
Assertion
Ref Expression
sticksstones20 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   ,𝑁,𝑖   𝑆,,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝜑()   𝐴(𝑔,)   𝐵(𝑔,)   𝑆(𝑔)   𝐾()

Proof of Theorem sticksstones20
Dummy variables 𝑎 𝑏 𝑝 𝑥 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones20.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2 isfinite4 13957 . . . . . . . 8 (𝑆 ∈ Fin ↔ (1...(♯‘𝑆)) ≈ 𝑆)
3 bren 8657 . . . . . . . 8 ((1...(♯‘𝑆)) ≈ 𝑆 ↔ ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
42, 3sylbb 222 . . . . . . 7 (𝑆 ∈ Fin → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
51, 4syl 17 . . . . . 6 (𝜑 → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
6 sticksstones20.6 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) = 𝐾)
76oveq2d 7248 . . . . . . . . 9 (𝜑 → (1...(♯‘𝑆)) = (1...𝐾))
87f1oeq2d 6676 . . . . . . . 8 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
98biimpd 232 . . . . . . 7 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
109eximdv 1925 . . . . . 6 (𝜑 → (∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆))
115, 10mpd 15 . . . . 5 (𝜑 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆)
12 sticksstones20.4 . . . . . . . . . . 11 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
1312a1i 11 . . . . . . . . . 10 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
14 fzfid 13573 . . . . . . . . . . . 12 (𝜑 → (1...𝐾) ∈ Fin)
15 nn0ex 12121 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 mapex 8535 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
1814, 16, 17syl2anc 587 . . . . . . . . . . 11 (𝜑 → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
19 simprl 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)) → 𝑔:(1...𝐾)⟶ℕ0)
2019ex 416 . . . . . . . . . . . 12 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) → 𝑔:(1...𝐾)⟶ℕ0))
2120ss2abdv 3992 . . . . . . . . . . 11 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...𝐾)⟶ℕ0})
2218, 21ssexd 5232 . . . . . . . . . 10 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ∈ V)
2313, 22eqeltrd 2839 . . . . . . . . 9 (𝜑𝐴 ∈ V)
2423adantr 484 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴 ∈ V)
2524mptexd 7059 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) ∈ V)
26 sticksstones20.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2726adantr 484 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑁 ∈ ℕ0)
28 sticksstones20.3 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
2928nnnn0d 12175 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
3029adantr 484 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐾 ∈ ℕ0)
31 sticksstones20.5 . . . . . . . 8 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32 simpr 488 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑝:(1...𝐾)–1-1-onto𝑆)
33 eqid 2738 . . . . . . . 8 (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥))))
34 eqid 2738 . . . . . . . 8 (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦)))) = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦))))
3527, 30, 12, 31, 32, 33, 34sticksstones19 39878 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵)
36 f1oeq1 6668 . . . . . . 7 (𝑞 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) → (𝑞:𝐴1-1-onto𝐵 ↔ (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵))
3725, 35, 36spcedv 3526 . . . . . 6 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → ∃𝑞 𝑞:𝐴1-1-onto𝐵)
38 bren 8657 . . . . . 6 (𝐴𝐵 ↔ ∃𝑞 𝑞:𝐴1-1-onto𝐵)
3937, 38sylibr 237 . . . . 5 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴𝐵)
4011, 39exlimddv 1943 . . . 4 (𝜑𝐴𝐵)
41 hasheni 13942 . . . 4 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
4240, 41syl 17 . . 3 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
4342eqcomd 2744 . 2 (𝜑 → (♯‘𝐵) = (♯‘𝐴))
4426, 28, 12sticksstones16 39875 . 2 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
4543, 44eqtrd 2778 1 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2111  {cab 2715  Vcvv 3421   class class class wbr 5068  cmpt 5150  ccnv 5565  wf 6394  1-1-ontowf1o 6397  cfv 6398  (class class class)co 7232  cen 8644  Fincfn 8647  1c1 10755   + caddc 10757  cmin 11087  cn 11855  0cn0 12115  ...cfz 13120  Ccbc 13896  chash 13924  Σcsu 15277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-inf2 9281  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-oadd 8227  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-sup 9083  df-inf 9084  df-oi 9151  df-dju 9542  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-n0 12116  df-z 12202  df-uz 12464  df-rp 12612  df-ico 12966  df-fz 13121  df-fzo 13264  df-seq 13602  df-exp 13663  df-fac 13868  df-bc 13897  df-hash 13925  df-cj 14690  df-re 14691  df-im 14692  df-sqrt 14826  df-abs 14827  df-clim 15077  df-sum 15278
This theorem is referenced by:  sticksstones21  39880
  Copyright terms: Public domain W3C validator