Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones20 Structured version   Visualization version   GIF version

Theorem sticksstones20 39842
Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024.)
Hypotheses
Ref Expression
sticksstones20.1 (𝜑𝑁 ∈ ℕ0)
sticksstones20.2 (𝜑𝑆 ∈ Fin)
sticksstones20.3 (𝜑𝐾 ∈ ℕ)
sticksstones20.4 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones20.5 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones20.6 (𝜑 → (♯‘𝑆) = 𝐾)
Assertion
Ref Expression
sticksstones20 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑔,𝐾,𝑖   𝑔,𝑁,𝑖   ,𝑁,𝑖   𝑆,,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝜑()   𝐴(𝑔,)   𝐵(𝑔,)   𝑆(𝑔)   𝐾()

Proof of Theorem sticksstones20
Dummy variables 𝑎 𝑏 𝑝 𝑥 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones20.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2 isfinite4 13926 . . . . . . . 8 (𝑆 ∈ Fin ↔ (1...(♯‘𝑆)) ≈ 𝑆)
3 bren 8633 . . . . . . . 8 ((1...(♯‘𝑆)) ≈ 𝑆 ↔ ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
42, 3sylbb 222 . . . . . . 7 (𝑆 ∈ Fin → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
51, 4syl 17 . . . . . 6 (𝜑 → ∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆)
6 sticksstones20.6 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) = 𝐾)
76oveq2d 7226 . . . . . . . . 9 (𝜑 → (1...(♯‘𝑆)) = (1...𝐾))
87f1oeq2d 6654 . . . . . . . 8 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
98biimpd 232 . . . . . . 7 (𝜑 → (𝑝:(1...(♯‘𝑆))–1-1-onto𝑆𝑝:(1...𝐾)–1-1-onto𝑆))
109eximdv 1925 . . . . . 6 (𝜑 → (∃𝑝 𝑝:(1...(♯‘𝑆))–1-1-onto𝑆 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆))
115, 10mpd 15 . . . . 5 (𝜑 → ∃𝑝 𝑝:(1...𝐾)–1-1-onto𝑆)
12 sticksstones20.4 . . . . . . . . . . 11 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
1312a1i 11 . . . . . . . . . 10 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
14 fzfid 13543 . . . . . . . . . . . 12 (𝜑 → (1...𝐾) ∈ Fin)
15 nn0ex 12093 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 mapex 8511 . . . . . . . . . . . 12 (((1...𝐾) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
1814, 16, 17syl2anc 587 . . . . . . . . . . 11 (𝜑 → {𝑔𝑔:(1...𝐾)⟶ℕ0} ∈ V)
19 simprl 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)) → 𝑔:(1...𝐾)⟶ℕ0)
2019ex 416 . . . . . . . . . . . 12 (𝜑 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) → 𝑔:(1...𝐾)⟶ℕ0))
2120ss2abdv 3974 . . . . . . . . . . 11 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...𝐾)⟶ℕ0})
2218, 21ssexd 5214 . . . . . . . . . 10 (𝜑 → {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ∈ V)
2313, 22eqeltrd 2838 . . . . . . . . 9 (𝜑𝐴 ∈ V)
2423adantr 484 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴 ∈ V)
2524mptexd 7037 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) ∈ V)
26 sticksstones20.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2726adantr 484 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑁 ∈ ℕ0)
28 sticksstones20.3 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
2928nnnn0d 12147 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
3029adantr 484 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐾 ∈ ℕ0)
31 sticksstones20.5 . . . . . . . 8 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
32 simpr 488 . . . . . . . 8 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝑝:(1...𝐾)–1-1-onto𝑆)
33 eqid 2737 . . . . . . . 8 (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥))))
34 eqid 2737 . . . . . . . 8 (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦)))) = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑝𝑦))))
3527, 30, 12, 31, 32, 33, 34sticksstones19 39841 . . . . . . 7 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵)
36 f1oeq1 6646 . . . . . . 7 (𝑞 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))) → (𝑞:𝐴1-1-onto𝐵 ↔ (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑝𝑥)))):𝐴1-1-onto𝐵))
3725, 35, 36spcedv 3510 . . . . . 6 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → ∃𝑞 𝑞:𝐴1-1-onto𝐵)
38 bren 8633 . . . . . 6 (𝐴𝐵 ↔ ∃𝑞 𝑞:𝐴1-1-onto𝐵)
3937, 38sylibr 237 . . . . 5 ((𝜑𝑝:(1...𝐾)–1-1-onto𝑆) → 𝐴𝐵)
4011, 39exlimddv 1943 . . . 4 (𝜑𝐴𝐵)
41 hasheni 13911 . . . 4 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
4240, 41syl 17 . . 3 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
4342eqcomd 2743 . 2 (𝜑 → (♯‘𝐵) = (♯‘𝐴))
4426, 28, 12sticksstones16 39838 . 2 (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
4543, 44eqtrd 2777 1 (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  {cab 2714  Vcvv 3405   class class class wbr 5050  cmpt 5132  ccnv 5547  wf 6373  1-1-ontowf1o 6376  cfv 6377  (class class class)co 7210  cen 8620  Fincfn 8623  1c1 10727   + caddc 10729  cmin 11059  cn 11827  0cn0 12087  ...cfz 13092  Ccbc 13865  chash 13893  Σcsu 15246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5255  ax-pr 5319  ax-un 7520  ax-inf2 9253  ax-cnex 10782  ax-resscn 10783  ax-1cn 10784  ax-icn 10785  ax-addcl 10786  ax-addrcl 10787  ax-mulcl 10788  ax-mulrcl 10789  ax-mulcom 10790  ax-addass 10791  ax-mulass 10792  ax-distr 10793  ax-i2m1 10794  ax-1ne0 10795  ax-1rid 10796  ax-rnegex 10797  ax-rrecex 10798  ax-cnre 10799  ax-pre-lttri 10800  ax-pre-lttrn 10801  ax-pre-ltadd 10802  ax-pre-mulgt0 10803  ax-pre-sup 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2940  df-nel 3044  df-ral 3063  df-rex 3064  df-reu 3065  df-rmo 3066  df-rab 3067  df-v 3407  df-sbc 3692  df-csb 3809  df-dif 3866  df-un 3868  df-in 3870  df-ss 3880  df-pss 3882  df-nul 4235  df-if 4437  df-pw 4512  df-sn 4539  df-pr 4541  df-tp 4543  df-op 4545  df-uni 4817  df-int 4857  df-iun 4903  df-br 5051  df-opab 5113  df-mpt 5133  df-tr 5159  df-id 5452  df-eprel 5457  df-po 5465  df-so 5466  df-fr 5506  df-se 5507  df-we 5508  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6157  df-ord 6213  df-on 6214  df-lim 6215  df-suc 6216  df-iota 6335  df-fun 6379  df-fn 6380  df-f 6381  df-f1 6382  df-fo 6383  df-f1o 6384  df-fv 6385  df-isom 6386  df-riota 7167  df-ov 7213  df-oprab 7214  df-mpo 7215  df-om 7642  df-1st 7758  df-2nd 7759  df-wrecs 8044  df-recs 8105  df-rdg 8143  df-1o 8199  df-oadd 8203  df-er 8388  df-en 8624  df-dom 8625  df-sdom 8626  df-fin 8627  df-sup 9055  df-inf 9056  df-oi 9123  df-dju 9514  df-card 9552  df-pnf 10866  df-mnf 10867  df-xr 10868  df-ltxr 10869  df-le 10870  df-sub 11061  df-neg 11062  df-div 11487  df-nn 11828  df-2 11890  df-3 11891  df-n0 12088  df-z 12174  df-uz 12436  df-rp 12584  df-ico 12938  df-fz 13093  df-fzo 13236  df-seq 13572  df-exp 13633  df-fac 13837  df-bc 13866  df-hash 13894  df-cj 14659  df-re 14660  df-im 14661  df-sqrt 14795  df-abs 14796  df-clim 15046  df-sum 15247
This theorem is referenced by:  sticksstones21  39843
  Copyright terms: Public domain W3C validator