Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautset Structured version   Visualization version   GIF version

Theorem lautset 37378
Description: The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautset (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐾,𝑥,𝑦   ,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑦,𝑓)   (𝑥,𝑦)

Proof of Theorem lautset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐾𝐴𝐾 ∈ V)
2 lautset.i . . 3 𝐼 = (LAut‘𝐾)
3 fveq2 6645 . . . . . . . . 9 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lautset.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2851 . . . . . . . 8 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
65f1oeq2d 6586 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto→(Base‘𝑘)))
7 f1oeq3 6581 . . . . . . . 8 ((Base‘𝑘) = 𝐵 → (𝑓:𝐵1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
85, 7syl 17 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:𝐵1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
96, 8bitrd 282 . . . . . 6 (𝑘 = 𝐾 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
10 fveq2 6645 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
11 lautset.l . . . . . . . . . . 11 = (le‘𝐾)
1210, 11eqtr4di 2851 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = )
1312breqd 5041 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑦𝑥 𝑦))
1412breqd 5041 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑓𝑥)(le‘𝑘)(𝑓𝑦) ↔ (𝑓𝑥) (𝑓𝑦)))
1513, 14bibi12d 349 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
165, 15raleqbidv 3354 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
175, 16raleqbidv 3354 . . . . . 6 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
189, 17anbi12d 633 . . . . 5 (𝑘 = 𝐾 → ((𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦))) ↔ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))))
1918abbidv 2862 . . . 4 (𝑘 = 𝐾 → {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))} = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
20 df-laut 37285 . . . 4 LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))})
214fvexi 6659 . . . . . . . 8 𝐵 ∈ V
2221, 21mapval 8401 . . . . . . 7 (𝐵m 𝐵) = {𝑓𝑓:𝐵𝐵}
23 ovex 7168 . . . . . . 7 (𝐵m 𝐵) ∈ V
2422, 23eqeltrri 2887 . . . . . 6 {𝑓𝑓:𝐵𝐵} ∈ V
25 f1of 6590 . . . . . . 7 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
2625ss2abi 3994 . . . . . 6 {𝑓𝑓:𝐵1-1-onto𝐵} ⊆ {𝑓𝑓:𝐵𝐵}
2724, 26ssexi 5190 . . . . 5 {𝑓𝑓:𝐵1-1-onto𝐵} ∈ V
28 simpl 486 . . . . . 6 ((𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))) → 𝑓:𝐵1-1-onto𝐵)
2928ss2abi 3994 . . . . 5 {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ⊆ {𝑓𝑓:𝐵1-1-onto𝐵}
3027, 29ssexi 5190 . . . 4 {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ∈ V
3119, 20, 30fvmpt 6745 . . 3 (𝐾 ∈ V → (LAut‘𝐾) = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
322, 31syl5eq 2845 . 2 (𝐾 ∈ V → 𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
331, 32syl 17 1 (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  Vcvv 3441   class class class wbr 5030  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  m cmap 8389  Basecbs 16475  lecple 16564  LAutclaut 37281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-laut 37285
This theorem is referenced by:  islaut  37379
  Copyright terms: Public domain W3C validator