Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautset Structured version   Visualization version   GIF version

Theorem lautset 38948
Description: The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐡 = (Baseβ€˜πΎ)
lautset.l ≀ = (leβ€˜πΎ)
lautset.i 𝐼 = (LAutβ€˜πΎ)
Assertion
Ref Expression
lautset (𝐾 ∈ 𝐴 β†’ 𝐼 = {𝑓 ∣ (𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))})
Distinct variable groups:   π‘₯,𝑓,𝑦,𝐡   𝑓,𝐾,π‘₯,𝑦   ≀ ,𝑓
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑓)   𝐼(π‘₯,𝑦,𝑓)   ≀ (π‘₯,𝑦)

Proof of Theorem lautset
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝐴 β†’ 𝐾 ∈ V)
2 lautset.i . . 3 𝐼 = (LAutβ€˜πΎ)
3 fveq2 6891 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
4 lautset.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΎ)
53, 4eqtr4di 2790 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
65f1oeq2d 6829 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓:(Baseβ€˜π‘˜)–1-1-ontoβ†’(Baseβ€˜π‘˜) ↔ 𝑓:𝐡–1-1-ontoβ†’(Baseβ€˜π‘˜)))
7 f1oeq3 6823 . . . . . . . 8 ((Baseβ€˜π‘˜) = 𝐡 β†’ (𝑓:𝐡–1-1-ontoβ†’(Baseβ€˜π‘˜) ↔ 𝑓:𝐡–1-1-onto→𝐡))
85, 7syl 17 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓:𝐡–1-1-ontoβ†’(Baseβ€˜π‘˜) ↔ 𝑓:𝐡–1-1-onto→𝐡))
96, 8bitrd 278 . . . . . 6 (π‘˜ = 𝐾 β†’ (𝑓:(Baseβ€˜π‘˜)–1-1-ontoβ†’(Baseβ€˜π‘˜) ↔ 𝑓:𝐡–1-1-onto→𝐡))
10 fveq2 6891 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = (leβ€˜πΎ))
11 lautset.l . . . . . . . . . . 11 ≀ = (leβ€˜πΎ)
1210, 11eqtr4di 2790 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = ≀ )
1312breqd 5159 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (π‘₯(leβ€˜π‘˜)𝑦 ↔ π‘₯ ≀ 𝑦))
1412breqd 5159 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ ((π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦) ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))
1513, 14bibi12d 345 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((π‘₯(leβ€˜π‘˜)𝑦 ↔ (π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦)) ↔ (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦))))
165, 15raleqbidv 3342 . . . . . . 7 (π‘˜ = 𝐾 β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑦 ↔ (π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦))))
175, 16raleqbidv 3342 . . . . . 6 (π‘˜ = 𝐾 β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)βˆ€π‘¦ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑦 ↔ (π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦))))
189, 17anbi12d 631 . . . . 5 (π‘˜ = 𝐾 β†’ ((𝑓:(Baseβ€˜π‘˜)–1-1-ontoβ†’(Baseβ€˜π‘˜) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)βˆ€π‘¦ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑦 ↔ (π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦))) ↔ (𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))))
1918abbidv 2801 . . . 4 (π‘˜ = 𝐾 β†’ {𝑓 ∣ (𝑓:(Baseβ€˜π‘˜)–1-1-ontoβ†’(Baseβ€˜π‘˜) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)βˆ€π‘¦ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑦 ↔ (π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦)))} = {𝑓 ∣ (𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))})
20 df-laut 38855 . . . 4 LAut = (π‘˜ ∈ V ↦ {𝑓 ∣ (𝑓:(Baseβ€˜π‘˜)–1-1-ontoβ†’(Baseβ€˜π‘˜) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)βˆ€π‘¦ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑦 ↔ (π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦)))})
214fvexi 6905 . . . . . . . 8 𝐡 ∈ V
2221, 21mapval 8831 . . . . . . 7 (𝐡 ↑m 𝐡) = {𝑓 ∣ 𝑓:𝐡⟢𝐡}
23 ovex 7441 . . . . . . 7 (𝐡 ↑m 𝐡) ∈ V
2422, 23eqeltrri 2830 . . . . . 6 {𝑓 ∣ 𝑓:𝐡⟢𝐡} ∈ V
25 f1of 6833 . . . . . . 7 (𝑓:𝐡–1-1-onto→𝐡 β†’ 𝑓:𝐡⟢𝐡)
2625ss2abi 4063 . . . . . 6 {𝑓 ∣ 𝑓:𝐡–1-1-onto→𝐡} βŠ† {𝑓 ∣ 𝑓:𝐡⟢𝐡}
2724, 26ssexi 5322 . . . . 5 {𝑓 ∣ 𝑓:𝐡–1-1-onto→𝐡} ∈ V
28 simpl 483 . . . . . 6 ((𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦))) β†’ 𝑓:𝐡–1-1-onto→𝐡)
2928ss2abi 4063 . . . . 5 {𝑓 ∣ (𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))} βŠ† {𝑓 ∣ 𝑓:𝐡–1-1-onto→𝐡}
3027, 29ssexi 5322 . . . 4 {𝑓 ∣ (𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))} ∈ V
3119, 20, 30fvmpt 6998 . . 3 (𝐾 ∈ V β†’ (LAutβ€˜πΎ) = {𝑓 ∣ (𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))})
322, 31eqtrid 2784 . 2 (𝐾 ∈ V β†’ 𝐼 = {𝑓 ∣ (𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))})
331, 32syl 17 1 (𝐾 ∈ 𝐴 β†’ 𝐼 = {𝑓 ∣ (𝑓:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘“β€˜π‘₯) ≀ (π‘“β€˜π‘¦)))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  Vcvv 3474   class class class wbr 5148  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819  Basecbs 17143  lecple 17203  LAutclaut 38851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-laut 38855
This theorem is referenced by:  islaut  38949
  Copyright terms: Public domain W3C validator