Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautset Structured version   Visualization version   GIF version

Theorem lautset 36061
Description: The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautset (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐾,𝑥,𝑦   ,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑦,𝑓)   (𝑥,𝑦)

Proof of Theorem lautset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3365 . 2 (𝐾𝐴𝐾 ∈ V)
2 lautset.i . . 3 𝐼 = (LAut‘𝐾)
3 fveq2 6379 . . . . . . . . 9 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lautset.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2817 . . . . . . . 8 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 f1oeq2 6315 . . . . . . . 8 ((Base‘𝑘) = 𝐵 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto→(Base‘𝑘)))
75, 6syl 17 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto→(Base‘𝑘)))
8 f1oeq3 6316 . . . . . . . 8 ((Base‘𝑘) = 𝐵 → (𝑓:𝐵1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
95, 8syl 17 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:𝐵1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
107, 9bitrd 270 . . . . . 6 (𝑘 = 𝐾 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
11 fveq2 6379 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
12 lautset.l . . . . . . . . . . 11 = (le‘𝐾)
1311, 12syl6eqr 2817 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = )
1413breqd 4822 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑦𝑥 𝑦))
1513breqd 4822 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑓𝑥)(le‘𝑘)(𝑓𝑦) ↔ (𝑓𝑥) (𝑓𝑦)))
1614, 15bibi12d 336 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
175, 16raleqbidv 3300 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
185, 17raleqbidv 3300 . . . . . 6 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
1910, 18anbi12d 624 . . . . 5 (𝑘 = 𝐾 → ((𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦))) ↔ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))))
2019abbidv 2884 . . . 4 (𝑘 = 𝐾 → {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))} = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
21 df-laut 35968 . . . 4 LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))})
224fvexi 6393 . . . . . . . 8 𝐵 ∈ V
2322, 22mapval 8076 . . . . . . 7 (𝐵𝑚 𝐵) = {𝑓𝑓:𝐵𝐵}
24 ovex 6878 . . . . . . 7 (𝐵𝑚 𝐵) ∈ V
2523, 24eqeltrri 2841 . . . . . 6 {𝑓𝑓:𝐵𝐵} ∈ V
26 f1of 6324 . . . . . . 7 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
2726ss2abi 3836 . . . . . 6 {𝑓𝑓:𝐵1-1-onto𝐵} ⊆ {𝑓𝑓:𝐵𝐵}
2825, 27ssexi 4966 . . . . 5 {𝑓𝑓:𝐵1-1-onto𝐵} ∈ V
29 simpl 474 . . . . . 6 ((𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))) → 𝑓:𝐵1-1-onto𝐵)
3029ss2abi 3836 . . . . 5 {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ⊆ {𝑓𝑓:𝐵1-1-onto𝐵}
3128, 30ssexi 4966 . . . 4 {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ∈ V
3220, 21, 31fvmpt 6475 . . 3 (𝐾 ∈ V → (LAut‘𝐾) = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
332, 32syl5eq 2811 . 2 (𝐾 ∈ V → 𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
341, 33syl 17 1 (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {cab 2751  wral 3055  Vcvv 3350   class class class wbr 4811  wf 6066  1-1-ontowf1o 6069  cfv 6070  (class class class)co 6846  𝑚 cmap 8064  Basecbs 16146  lecple 16237  LAutclaut 35964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-map 8066  df-laut 35968
This theorem is referenced by:  islaut  36062
  Copyright terms: Public domain W3C validator