Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautset Structured version   Visualization version   GIF version

Theorem lautset 40076
Description: The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautset (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐾,𝑥,𝑦   ,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑦,𝑓)   (𝑥,𝑦)

Proof of Theorem lautset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐾𝐴𝐾 ∈ V)
2 lautset.i . . 3 𝐼 = (LAut‘𝐾)
3 fveq2 6858 . . . . . . . . 9 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lautset.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2782 . . . . . . . 8 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
65f1oeq2d 6796 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto→(Base‘𝑘)))
7 f1oeq3 6790 . . . . . . . 8 ((Base‘𝑘) = 𝐵 → (𝑓:𝐵1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
85, 7syl 17 . . . . . . 7 (𝑘 = 𝐾 → (𝑓:𝐵1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
96, 8bitrd 279 . . . . . 6 (𝑘 = 𝐾 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵1-1-onto𝐵))
10 fveq2 6858 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
11 lautset.l . . . . . . . . . . 11 = (le‘𝐾)
1210, 11eqtr4di 2782 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = )
1312breqd 5118 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑦𝑥 𝑦))
1412breqd 5118 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑓𝑥)(le‘𝑘)(𝑓𝑦) ↔ (𝑓𝑥) (𝑓𝑦)))
1513, 14bibi12d 345 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
165, 15raleqbidv 3319 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
175, 16raleqbidv 3319 . . . . . 6 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))))
189, 17anbi12d 632 . . . . 5 (𝑘 = 𝐾 → ((𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦))) ↔ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))))
1918abbidv 2795 . . . 4 (𝑘 = 𝐾 → {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))} = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
20 df-laut 39983 . . . 4 LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))})
214fvexi 6872 . . . . . . . 8 𝐵 ∈ V
2221, 21mapval 8811 . . . . . . 7 (𝐵m 𝐵) = {𝑓𝑓:𝐵𝐵}
23 ovex 7420 . . . . . . 7 (𝐵m 𝐵) ∈ V
2422, 23eqeltrri 2825 . . . . . 6 {𝑓𝑓:𝐵𝐵} ∈ V
25 f1of 6800 . . . . . . 7 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
2625ss2abi 4030 . . . . . 6 {𝑓𝑓:𝐵1-1-onto𝐵} ⊆ {𝑓𝑓:𝐵𝐵}
2724, 26ssexi 5277 . . . . 5 {𝑓𝑓:𝐵1-1-onto𝐵} ∈ V
28 simpl 482 . . . . . 6 ((𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))) → 𝑓:𝐵1-1-onto𝐵)
2928ss2abi 4030 . . . . 5 {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ⊆ {𝑓𝑓:𝐵1-1-onto𝐵}
3027, 29ssexi 5277 . . . 4 {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ∈ V
3119, 20, 30fvmpt 6968 . . 3 (𝐾 ∈ V → (LAut‘𝐾) = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
322, 31eqtrid 2776 . 2 (𝐾 ∈ V → 𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
331, 32syl 17 1 (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3447   class class class wbr 5107  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  m cmap 8799  Basecbs 17179  lecple 17227  LAutclaut 39979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-laut 39983
This theorem is referenced by:  islaut  40077
  Copyright terms: Public domain W3C validator