Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. 2
⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) |
2 | | lautset.i |
. . 3
⊢ 𝐼 = (LAut‘𝐾) |
3 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) |
4 | | lautset.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
5 | 3, 4 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
6 | 5 | f1oeq2d 6712 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵–1-1-onto→(Base‘𝑘))) |
7 | | f1oeq3 6706 |
. . . . . . . 8
⊢
((Base‘𝑘) =
𝐵 → (𝑓:𝐵–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵–1-1-onto→𝐵)) |
8 | 5, 7 | syl 17 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑓:𝐵–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵–1-1-onto→𝐵)) |
9 | 6, 8 | bitrd 278 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ↔ 𝑓:𝐵–1-1-onto→𝐵)) |
10 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) |
11 | | lautset.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
12 | 10, 11 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
13 | 12 | breqd 5085 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑦 ↔ 𝑥 ≤ 𝑦)) |
14 | 12 | breqd 5085 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → ((𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦) ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦))) |
15 | 13, 14 | bibi12d 346 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))) |
16 | 5, 15 | raleqbidv 3336 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))) |
17 | 5, 16 | raleqbidv 3336 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))) |
18 | 9, 17 | anbi12d 631 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦))) ↔ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦))))) |
19 | 18 | abbidv 2807 |
. . . 4
⊢ (𝑘 = 𝐾 → {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦)))} = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) |
20 | | df-laut 38003 |
. . . 4
⊢ LAut =
(𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦)))}) |
21 | 4 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
22 | 21, 21 | mapval 8627 |
. . . . . . 7
⊢ (𝐵 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐵} |
23 | | ovex 7308 |
. . . . . . 7
⊢ (𝐵 ↑m 𝐵) ∈ V |
24 | 22, 23 | eqeltrri 2836 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:𝐵⟶𝐵} ∈ V |
25 | | f1of 6716 |
. . . . . . 7
⊢ (𝑓:𝐵–1-1-onto→𝐵 → 𝑓:𝐵⟶𝐵) |
26 | 25 | ss2abi 4000 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐵⟶𝐵} |
27 | 24, 26 | ssexi 5246 |
. . . . 5
⊢ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐵} ∈ V |
28 | | simpl 483 |
. . . . . 6
⊢ ((𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦))) → 𝑓:𝐵–1-1-onto→𝐵) |
29 | 28 | ss2abi 4000 |
. . . . 5
⊢ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))} ⊆ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐵} |
30 | 27, 29 | ssexi 5246 |
. . . 4
⊢ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))} ∈ V |
31 | 19, 20, 30 | fvmpt 6875 |
. . 3
⊢ (𝐾 ∈ V →
(LAut‘𝐾) = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) |
32 | 2, 31 | eqtrid 2790 |
. 2
⊢ (𝐾 ∈ V → 𝐼 = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) |
33 | 1, 32 | syl 17 |
1
⊢ (𝐾 ∈ 𝐴 → 𝐼 = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) |