MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw2 Structured version   Visualization version   GIF version

Theorem f1opw2 7705
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 7706 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1opw2.2 (𝜑 → (𝐹𝑎) ∈ V)
f1opw2.3 (𝜑 → (𝐹𝑏) ∈ V)
Assertion
Ref Expression
f1opw2 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2740 . 2 (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)) = (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏))
2 f1opw2.3 . . . 4 (𝜑 → (𝐹𝑏) ∈ V)
3 imassrn 6100 . . . . 5 (𝐹𝑏) ⊆ ran 𝐹
4 f1opw2.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐵)
5 f1ofo 6869 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
64, 5syl 17 . . . . . 6 (𝜑𝐹:𝐴onto𝐵)
7 forn 6837 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
86, 7syl 17 . . . . 5 (𝜑 → ran 𝐹 = 𝐵)
93, 8sseqtrid 4061 . . . 4 (𝜑 → (𝐹𝑏) ⊆ 𝐵)
102, 9elpwd 4628 . . 3 (𝜑 → (𝐹𝑏) ∈ 𝒫 𝐵)
1110adantr 480 . 2 ((𝜑𝑏 ∈ 𝒫 𝐴) → (𝐹𝑏) ∈ 𝒫 𝐵)
12 f1opw2.2 . . . 4 (𝜑 → (𝐹𝑎) ∈ V)
13 imassrn 6100 . . . . 5 (𝐹𝑎) ⊆ ran 𝐹
14 dfdm4 5920 . . . . . 6 dom 𝐹 = ran 𝐹
15 f1odm 6866 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
164, 15syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1714, 16eqtr3id 2794 . . . . 5 (𝜑 → ran 𝐹 = 𝐴)
1813, 17sseqtrid 4061 . . . 4 (𝜑 → (𝐹𝑎) ⊆ 𝐴)
1912, 18elpwd 4628 . . 3 (𝜑 → (𝐹𝑎) ∈ 𝒫 𝐴)
2019adantr 480 . 2 ((𝜑𝑎 ∈ 𝒫 𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
21 elpwi 4629 . . . . . . 7 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
2221adantl 481 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑎𝐵)
23 foimacnv 6879 . . . . . 6 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
246, 22, 23syl2an 595 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2524eqcomd 2746 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (𝐹𝑎)))
26 imaeq2 6085 . . . . 5 (𝑏 = (𝐹𝑎) → (𝐹𝑏) = (𝐹 “ (𝐹𝑎)))
2726eqeq2d 2751 . . . 4 (𝑏 = (𝐹𝑎) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹 “ (𝐹𝑎))))
2825, 27syl5ibrcom 247 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) → 𝑎 = (𝐹𝑏)))
29 f1of1 6861 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
304, 29syl 17 . . . . . 6 (𝜑𝐹:𝐴1-1𝐵)
31 elpwi 4629 . . . . . . 7 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
3231adantr 480 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑏𝐴)
33 f1imacnv 6878 . . . . . 6 ((𝐹:𝐴1-1𝐵𝑏𝐴) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3430, 32, 33syl2an 595 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3534eqcomd 2746 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (𝐹 “ (𝐹𝑏)))
36 imaeq2 6085 . . . . 5 (𝑎 = (𝐹𝑏) → (𝐹𝑎) = (𝐹 “ (𝐹𝑏)))
3736eqeq2d 2751 . . . 4 (𝑎 = (𝐹𝑏) → (𝑏 = (𝐹𝑎) ↔ 𝑏 = (𝐹 “ (𝐹𝑏))))
3835, 37syl5ibrcom 247 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹𝑏) → 𝑏 = (𝐹𝑎)))
3928, 38impbid 212 . 2 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
401, 11, 20, 39f1o2d 7704 1 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  f1opw  7706
  Copyright terms: Public domain W3C validator