Proof of Theorem f1opw2
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢ (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)) = (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)) |
2 | | f1opw2.3 |
. . . 4
⊢ (𝜑 → (𝐹 “ 𝑏) ∈ V) |
3 | | imassrn 5980 |
. . . . 5
⊢ (𝐹 “ 𝑏) ⊆ ran 𝐹 |
4 | | f1opw2.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
5 | | f1ofo 6723 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
7 | | forn 6691 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
8 | 6, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐹 = 𝐵) |
9 | 3, 8 | sseqtrid 3973 |
. . . 4
⊢ (𝜑 → (𝐹 “ 𝑏) ⊆ 𝐵) |
10 | 2, 9 | elpwd 4541 |
. . 3
⊢ (𝜑 → (𝐹 “ 𝑏) ∈ 𝒫 𝐵) |
11 | 10 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐴) → (𝐹 “ 𝑏) ∈ 𝒫 𝐵) |
12 | | f1opw2.2 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ 𝑎) ∈ V) |
13 | | imassrn 5980 |
. . . . 5
⊢ (◡𝐹 “ 𝑎) ⊆ ran ◡𝐹 |
14 | | dfdm4 5804 |
. . . . . 6
⊢ dom 𝐹 = ran ◡𝐹 |
15 | | f1odm 6720 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
16 | 4, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝐹 = 𝐴) |
17 | 14, 16 | eqtr3id 2792 |
. . . . 5
⊢ (𝜑 → ran ◡𝐹 = 𝐴) |
18 | 13, 17 | sseqtrid 3973 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
19 | 12, 18 | elpwd 4541 |
. . 3
⊢ (𝜑 → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) |
20 | 19 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) |
21 | | elpwi 4542 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵) |
22 | 21 | adantl 482 |
. . . . . 6
⊢ ((𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑎 ⊆ 𝐵) |
23 | | foimacnv 6733 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
24 | 6, 22, 23 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
25 | 24 | eqcomd 2744 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (◡𝐹 “ 𝑎))) |
26 | | imaeq2 5965 |
. . . . 5
⊢ (𝑏 = (◡𝐹 “ 𝑎) → (𝐹 “ 𝑏) = (𝐹 “ (◡𝐹 “ 𝑎))) |
27 | 26 | eqeq2d 2749 |
. . . 4
⊢ (𝑏 = (◡𝐹 “ 𝑎) → (𝑎 = (𝐹 “ 𝑏) ↔ 𝑎 = (𝐹 “ (◡𝐹 “ 𝑎)))) |
28 | 25, 27 | syl5ibrcom 246 |
. . 3
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (◡𝐹 “ 𝑎) → 𝑎 = (𝐹 “ 𝑏))) |
29 | | f1of1 6715 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
30 | 4, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
31 | | elpwi 4542 |
. . . . . . 7
⊢ (𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴) |
32 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑏 ⊆ 𝐴) |
33 | | f1imacnv 6732 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑏 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝑏)) = 𝑏) |
34 | 30, 32, 33 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (◡𝐹 “ (𝐹 “ 𝑏)) = 𝑏) |
35 | 34 | eqcomd 2744 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (◡𝐹 “ (𝐹 “ 𝑏))) |
36 | | imaeq2 5965 |
. . . . 5
⊢ (𝑎 = (𝐹 “ 𝑏) → (◡𝐹 “ 𝑎) = (◡𝐹 “ (𝐹 “ 𝑏))) |
37 | 36 | eqeq2d 2749 |
. . . 4
⊢ (𝑎 = (𝐹 “ 𝑏) → (𝑏 = (◡𝐹 “ 𝑎) ↔ 𝑏 = (◡𝐹 “ (𝐹 “ 𝑏)))) |
38 | 35, 37 | syl5ibrcom 246 |
. . 3
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹 “ 𝑏) → 𝑏 = (◡𝐹 “ 𝑎))) |
39 | 28, 38 | impbid 211 |
. 2
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (◡𝐹 “ 𝑎) ↔ 𝑎 = (𝐹 “ 𝑏))) |
40 | 1, 11, 20, 39 | f1o2d 7523 |
1
⊢ (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |