MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw2 Structured version   Visualization version   GIF version

Theorem f1opw2 7662
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 7663 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1opw2.2 (𝜑 → (𝐹𝑎) ∈ V)
f1opw2.3 (𝜑 → (𝐹𝑏) ∈ V)
Assertion
Ref Expression
f1opw2 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2735 . 2 (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)) = (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏))
2 f1opw2.3 . . . 4 (𝜑 → (𝐹𝑏) ∈ V)
3 imassrn 6058 . . . . 5 (𝐹𝑏) ⊆ ran 𝐹
4 f1opw2.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐵)
5 f1ofo 6825 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
64, 5syl 17 . . . . . 6 (𝜑𝐹:𝐴onto𝐵)
7 forn 6793 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
86, 7syl 17 . . . . 5 (𝜑 → ran 𝐹 = 𝐵)
93, 8sseqtrid 4001 . . . 4 (𝜑 → (𝐹𝑏) ⊆ 𝐵)
102, 9elpwd 4581 . . 3 (𝜑 → (𝐹𝑏) ∈ 𝒫 𝐵)
1110adantr 480 . 2 ((𝜑𝑏 ∈ 𝒫 𝐴) → (𝐹𝑏) ∈ 𝒫 𝐵)
12 f1opw2.2 . . . 4 (𝜑 → (𝐹𝑎) ∈ V)
13 imassrn 6058 . . . . 5 (𝐹𝑎) ⊆ ran 𝐹
14 dfdm4 5875 . . . . . 6 dom 𝐹 = ran 𝐹
15 f1odm 6822 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
164, 15syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1714, 16eqtr3id 2784 . . . . 5 (𝜑 → ran 𝐹 = 𝐴)
1813, 17sseqtrid 4001 . . . 4 (𝜑 → (𝐹𝑎) ⊆ 𝐴)
1912, 18elpwd 4581 . . 3 (𝜑 → (𝐹𝑎) ∈ 𝒫 𝐴)
2019adantr 480 . 2 ((𝜑𝑎 ∈ 𝒫 𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
21 elpwi 4582 . . . . . . 7 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
2221adantl 481 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑎𝐵)
23 foimacnv 6835 . . . . . 6 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
246, 22, 23syl2an 596 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2524eqcomd 2741 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (𝐹𝑎)))
26 imaeq2 6043 . . . . 5 (𝑏 = (𝐹𝑎) → (𝐹𝑏) = (𝐹 “ (𝐹𝑎)))
2726eqeq2d 2746 . . . 4 (𝑏 = (𝐹𝑎) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹 “ (𝐹𝑎))))
2825, 27syl5ibrcom 247 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) → 𝑎 = (𝐹𝑏)))
29 f1of1 6817 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
304, 29syl 17 . . . . . 6 (𝜑𝐹:𝐴1-1𝐵)
31 elpwi 4582 . . . . . . 7 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
3231adantr 480 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑏𝐴)
33 f1imacnv 6834 . . . . . 6 ((𝐹:𝐴1-1𝐵𝑏𝐴) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3430, 32, 33syl2an 596 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3534eqcomd 2741 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (𝐹 “ (𝐹𝑏)))
36 imaeq2 6043 . . . . 5 (𝑎 = (𝐹𝑏) → (𝐹𝑎) = (𝐹 “ (𝐹𝑏)))
3736eqeq2d 2746 . . . 4 (𝑎 = (𝐹𝑏) → (𝑏 = (𝐹𝑎) ↔ 𝑏 = (𝐹 “ (𝐹𝑏))))
3835, 37syl5ibrcom 247 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹𝑏) → 𝑏 = (𝐹𝑎)))
3928, 38impbid 212 . 2 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
401, 11, 20, 39f1o2d 7661 1 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  𝒫 cpw 4575  cmpt 5201  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538
This theorem is referenced by:  f1opw  7663
  Copyright terms: Public domain W3C validator