MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw2 Structured version   Visualization version   GIF version

Theorem f1opw2 7524
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 7525 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1opw2.2 (𝜑 → (𝐹𝑎) ∈ V)
f1opw2.3 (𝜑 → (𝐹𝑏) ∈ V)
Assertion
Ref Expression
f1opw2 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2738 . 2 (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)) = (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏))
2 f1opw2.3 . . . 4 (𝜑 → (𝐹𝑏) ∈ V)
3 imassrn 5980 . . . . 5 (𝐹𝑏) ⊆ ran 𝐹
4 f1opw2.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐵)
5 f1ofo 6723 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
64, 5syl 17 . . . . . 6 (𝜑𝐹:𝐴onto𝐵)
7 forn 6691 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
86, 7syl 17 . . . . 5 (𝜑 → ran 𝐹 = 𝐵)
93, 8sseqtrid 3973 . . . 4 (𝜑 → (𝐹𝑏) ⊆ 𝐵)
102, 9elpwd 4541 . . 3 (𝜑 → (𝐹𝑏) ∈ 𝒫 𝐵)
1110adantr 481 . 2 ((𝜑𝑏 ∈ 𝒫 𝐴) → (𝐹𝑏) ∈ 𝒫 𝐵)
12 f1opw2.2 . . . 4 (𝜑 → (𝐹𝑎) ∈ V)
13 imassrn 5980 . . . . 5 (𝐹𝑎) ⊆ ran 𝐹
14 dfdm4 5804 . . . . . 6 dom 𝐹 = ran 𝐹
15 f1odm 6720 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
164, 15syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1714, 16eqtr3id 2792 . . . . 5 (𝜑 → ran 𝐹 = 𝐴)
1813, 17sseqtrid 3973 . . . 4 (𝜑 → (𝐹𝑎) ⊆ 𝐴)
1912, 18elpwd 4541 . . 3 (𝜑 → (𝐹𝑎) ∈ 𝒫 𝐴)
2019adantr 481 . 2 ((𝜑𝑎 ∈ 𝒫 𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
21 elpwi 4542 . . . . . . 7 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
2221adantl 482 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑎𝐵)
23 foimacnv 6733 . . . . . 6 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
246, 22, 23syl2an 596 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2524eqcomd 2744 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (𝐹𝑎)))
26 imaeq2 5965 . . . . 5 (𝑏 = (𝐹𝑎) → (𝐹𝑏) = (𝐹 “ (𝐹𝑎)))
2726eqeq2d 2749 . . . 4 (𝑏 = (𝐹𝑎) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹 “ (𝐹𝑎))))
2825, 27syl5ibrcom 246 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) → 𝑎 = (𝐹𝑏)))
29 f1of1 6715 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
304, 29syl 17 . . . . . 6 (𝜑𝐹:𝐴1-1𝐵)
31 elpwi 4542 . . . . . . 7 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
3231adantr 481 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑏𝐴)
33 f1imacnv 6732 . . . . . 6 ((𝐹:𝐴1-1𝐵𝑏𝐴) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3430, 32, 33syl2an 596 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3534eqcomd 2744 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (𝐹 “ (𝐹𝑏)))
36 imaeq2 5965 . . . . 5 (𝑎 = (𝐹𝑏) → (𝐹𝑎) = (𝐹 “ (𝐹𝑏)))
3736eqeq2d 2749 . . . 4 (𝑎 = (𝐹𝑏) → (𝑏 = (𝐹𝑎) ↔ 𝑏 = (𝐹 “ (𝐹𝑏))))
3835, 37syl5ibrcom 246 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹𝑏) → 𝑏 = (𝐹𝑎)))
3928, 38impbid 211 . 2 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
401, 11, 20, 39f1o2d 7523 1 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  𝒫 cpw 4533  cmpt 5157  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  f1opw  7525
  Copyright terms: Public domain W3C validator