MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw2 Structured version   Visualization version   GIF version

Theorem f1opw2 7644
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 7645 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1opw2.2 (𝜑 → (𝐹𝑎) ∈ V)
f1opw2.3 (𝜑 → (𝐹𝑏) ∈ V)
Assertion
Ref Expression
f1opw2 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2729 . 2 (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)) = (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏))
2 f1opw2.3 . . . 4 (𝜑 → (𝐹𝑏) ∈ V)
3 imassrn 6042 . . . . 5 (𝐹𝑏) ⊆ ran 𝐹
4 f1opw2.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐵)
5 f1ofo 6807 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
64, 5syl 17 . . . . . 6 (𝜑𝐹:𝐴onto𝐵)
7 forn 6775 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
86, 7syl 17 . . . . 5 (𝜑 → ran 𝐹 = 𝐵)
93, 8sseqtrid 3989 . . . 4 (𝜑 → (𝐹𝑏) ⊆ 𝐵)
102, 9elpwd 4569 . . 3 (𝜑 → (𝐹𝑏) ∈ 𝒫 𝐵)
1110adantr 480 . 2 ((𝜑𝑏 ∈ 𝒫 𝐴) → (𝐹𝑏) ∈ 𝒫 𝐵)
12 f1opw2.2 . . . 4 (𝜑 → (𝐹𝑎) ∈ V)
13 imassrn 6042 . . . . 5 (𝐹𝑎) ⊆ ran 𝐹
14 dfdm4 5859 . . . . . 6 dom 𝐹 = ran 𝐹
15 f1odm 6804 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
164, 15syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1714, 16eqtr3id 2778 . . . . 5 (𝜑 → ran 𝐹 = 𝐴)
1813, 17sseqtrid 3989 . . . 4 (𝜑 → (𝐹𝑎) ⊆ 𝐴)
1912, 18elpwd 4569 . . 3 (𝜑 → (𝐹𝑎) ∈ 𝒫 𝐴)
2019adantr 480 . 2 ((𝜑𝑎 ∈ 𝒫 𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
21 elpwi 4570 . . . . . . 7 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
2221adantl 481 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑎𝐵)
23 foimacnv 6817 . . . . . 6 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
246, 22, 23syl2an 596 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2524eqcomd 2735 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (𝐹𝑎)))
26 imaeq2 6027 . . . . 5 (𝑏 = (𝐹𝑎) → (𝐹𝑏) = (𝐹 “ (𝐹𝑎)))
2726eqeq2d 2740 . . . 4 (𝑏 = (𝐹𝑎) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹 “ (𝐹𝑎))))
2825, 27syl5ibrcom 247 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) → 𝑎 = (𝐹𝑏)))
29 f1of1 6799 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
304, 29syl 17 . . . . . 6 (𝜑𝐹:𝐴1-1𝐵)
31 elpwi 4570 . . . . . . 7 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
3231adantr 480 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑏𝐴)
33 f1imacnv 6816 . . . . . 6 ((𝐹:𝐴1-1𝐵𝑏𝐴) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3430, 32, 33syl2an 596 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3534eqcomd 2735 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (𝐹 “ (𝐹𝑏)))
36 imaeq2 6027 . . . . 5 (𝑎 = (𝐹𝑏) → (𝐹𝑎) = (𝐹 “ (𝐹𝑏)))
3736eqeq2d 2740 . . . 4 (𝑎 = (𝐹𝑏) → (𝑏 = (𝐹𝑎) ↔ 𝑏 = (𝐹 “ (𝐹𝑏))))
3835, 37syl5ibrcom 247 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹𝑏) → 𝑏 = (𝐹𝑎)))
3928, 38impbid 212 . 2 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
401, 11, 20, 39f1o2d 7643 1 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  f1opw  7645
  Copyright terms: Public domain W3C validator