![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvco3d | Structured version Visualization version GIF version |
Description: Value of a function composition. Deduction form of fvco3 7021. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
fvco3d.1 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
fvco3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
fvco3d | ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco3d.1 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
2 | fvco3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | fvco3 7021 | . 2 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: opco1 8164 opco2 8165 suppcoss 8248 wemapwe 9766 canthp1lem2 10722 yonedainv 18351 frgpcyg 21615 psdmplcl 22189 rhmcomulmpl 22407 comet 24547 dvcobr 26003 gsumpart 33038 pmtrcnel 33082 subfacp1lem5 35152 aks5lem3a 42146 metakunt33 42194 rhmcomulpsr 42506 selvvvval 42540 evlselv 42542 extoimad 44126 imo72b2lem0 44127 imo72b2lem1 44131 fcores 46982 fcoresf1lem 46983 grimco 47764 uspgrlimlem3 47814 |
Copyright terms: Public domain | W3C validator |