MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco3d Structured version   Visualization version   GIF version

Theorem fvco3d 7009
Description: Value of a function composition. Deduction form of fvco3 7008. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fvco3d.1 (𝜑𝐺:𝐴𝐵)
fvco3d.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
fvco3d (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))

Proof of Theorem fvco3d
StepHypRef Expression
1 fvco3d.1 . 2 (𝜑𝐺:𝐴𝐵)
2 fvco3d.2 . 2 (𝜑𝐶𝐴)
3 fvco3 7008 . 2 ((𝐺:𝐴𝐵𝐶𝐴) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
41, 2, 3syl2anc 584 1 (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  ccom 5689  wf 6557  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569
This theorem is referenced by:  opco1  8148  opco2  8149  suppcoss  8232  wemapwe  9737  canthp1lem2  10693  yonedainv  18326  frgpcyg  21592  psdmplcl  22166  rhmcomulmpl  22386  comet  24526  dvcobr  25983  gsumpart  33060  pmtrcnel  33109  elrgspnlem1  33246  subfacp1lem5  35189  aks5lem3a  42190  metakunt33  42238  rhmcomulpsr  42561  selvvvval  42595  evlselv  42597  extoimad  44177  imo72b2lem0  44178  imo72b2lem1  44182  fcores  47079  fcoresf1lem  47080  grimco  47880  uspgrlimlem3  47957  fuco111x  49026  fuco112xa  49028  fuco11idx  49030  fuco22natlem3  49039  fuco22natlem  49040  fucoid  49043  fucocolem4  49051  fucolid  49056  fucorid  49057  precofvallem  49061
  Copyright terms: Public domain W3C validator