| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco3d | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Deduction form of fvco3 6942. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| fvco3d.1 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| fvco3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvco3d | ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco3d.1 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 2 | fvco3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | fvco3 6942 | . 2 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∘ ccom 5635 ⟶wf 6495 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 |
| This theorem is referenced by: opco1 8079 opco2 8080 suppcoss 8163 wemapwe 9626 canthp1lem2 10582 yonedainv 18218 frgpcyg 21459 psdmplcl 22025 rhmcomulmpl 22245 comet 24377 dvcobr 25825 gsumpart 32970 pmtrcnel 33019 elrgspnlem1 33166 subfacp1lem5 35144 aks5lem3a 42150 rhmcomulpsr 42512 selvvvval 42546 evlselv 42548 extoimad 44126 imo72b2lem0 44127 imo72b2lem1 44131 fcores 47041 fcoresf1lem 47042 grimco 47862 upgrimwlklem5 47874 upgrimpthslem2 47881 upgrimcycls 47884 uspgrlimlem3 47962 fuco111x 49293 fuco112xa 49295 fuco11idx 49297 fuco22natlem3 49306 fuco22natlem 49307 fucoid 49310 fucocolem4 49318 fucolid 49323 fucorid 49324 precofvallem 49328 prcof22a 49354 |
| Copyright terms: Public domain | W3C validator |