| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco3d | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Deduction form of fvco3 6978. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| fvco3d.1 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| fvco3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvco3d | ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco3d.1 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 2 | fvco3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | fvco3 6978 | . 2 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: opco1 8122 opco2 8123 suppcoss 8206 wemapwe 9711 canthp1lem2 10667 yonedainv 18293 frgpcyg 21534 psdmplcl 22100 rhmcomulmpl 22320 comet 24452 dvcobr 25901 gsumpart 33051 pmtrcnel 33100 elrgspnlem1 33237 subfacp1lem5 35206 aks5lem3a 42202 metakunt33 42250 rhmcomulpsr 42574 selvvvval 42608 evlselv 42610 extoimad 44188 imo72b2lem0 44189 imo72b2lem1 44193 fcores 47096 fcoresf1lem 47097 grimco 47902 upgrimwlklem5 47914 upgrimpthslem2 47921 upgrimcycls 47924 uspgrlimlem3 48002 fuco111x 49242 fuco112xa 49244 fuco11idx 49246 fuco22natlem3 49255 fuco22natlem 49256 fucoid 49259 fucocolem4 49267 fucolid 49272 fucorid 49273 precofvallem 49277 prcof22a 49302 |
| Copyright terms: Public domain | W3C validator |