Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvco3d | Structured version Visualization version GIF version |
Description: Value of a function composition. Deduction form of fvco3 6849. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
fvco3d.1 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
fvco3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
fvco3d | ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco3d.1 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
2 | fvco3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | fvco3 6849 | . 2 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: opco1 7935 opco2 7936 suppcoss 7994 wemapwe 9385 canthp1lem2 10340 yonedainv 17915 frgpcyg 20693 comet 23575 gsumpart 31217 pmtrcnel 31260 subfacp1lem5 33046 metakunt33 40085 selvval2lem4 40154 extoimad 41664 imo72b2lem0 41665 imo72b2lem1 41669 fcores 44448 fcoresf1lem 44449 |
Copyright terms: Public domain | W3C validator |