Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvco3d | Structured version Visualization version GIF version |
Description: Value of a function composition. Deduction form of fvco3 6864. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
fvco3d.1 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
fvco3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
fvco3d | ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco3d.1 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
2 | fvco3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | fvco3 6864 | . 2 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∘ ccom 5594 ⟶wf 6428 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 |
This theorem is referenced by: opco1 7956 opco2 7957 suppcoss 8015 wemapwe 9443 canthp1lem2 10420 yonedainv 18010 frgpcyg 20792 comet 23680 gsumpart 31324 pmtrcnel 31367 subfacp1lem5 33155 metakunt33 40166 selvval2lem4 40237 extoimad 41757 imo72b2lem0 41758 imo72b2lem1 41762 fcores 44540 fcoresf1lem 44541 |
Copyright terms: Public domain | W3C validator |