| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco3d | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Deduction form of fvco3 6988. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| fvco3d.1 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| fvco3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvco3d | ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco3d.1 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 2 | fvco3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | fvco3 6988 | . 2 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∘ ccom 5669 ⟶wf 6537 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 |
| This theorem is referenced by: opco1 8130 opco2 8131 suppcoss 8214 wemapwe 9719 canthp1lem2 10675 yonedainv 18296 frgpcyg 21546 psdmplcl 22114 rhmcomulmpl 22334 comet 24470 dvcobr 25919 gsumpart 32999 pmtrcnel 33048 elrgspnlem1 33185 subfacp1lem5 35148 aks5lem3a 42149 metakunt33 42197 rhmcomulpsr 42524 selvvvval 42558 evlselv 42560 extoimad 44139 imo72b2lem0 44140 imo72b2lem1 44144 fcores 47037 fcoresf1lem 47038 grimco 47838 uspgrlimlem3 47915 fuco111x 49002 fuco112xa 49004 fuco11idx 49006 fuco22natlem3 49015 fuco22natlem 49016 fucoid 49019 fucocolem4 49027 fucolid 49032 fucorid 49033 precofvallem 49037 |
| Copyright terms: Public domain | W3C validator |