MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco3d Structured version   Visualization version   GIF version

Theorem fvco3d 6992
Description: Value of a function composition. Deduction form of fvco3 6991. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fvco3d.1 (𝜑𝐺:𝐴𝐵)
fvco3d.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
fvco3d (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))

Proof of Theorem fvco3d
StepHypRef Expression
1 fvco3d.1 . 2 (𝜑𝐺:𝐴𝐵)
2 fvco3d.2 . 2 (𝜑𝐶𝐴)
3 fvco3 6991 . 2 ((𝐺:𝐴𝐵𝐶𝐴) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
41, 2, 3syl2anc 585 1 (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  ccom 5681  wf 6540  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552
This theorem is referenced by:  opco1  8109  opco2  8110  suppcoss  8192  wemapwe  9692  canthp1lem2  10648  yonedainv  18234  frgpcyg  21129  comet  24022  gsumpart  32238  pmtrcnel  32281  subfacp1lem5  34206  gg-dvcobr  35207  metakunt33  41065  rhmcomulmpl  41172  selvvvval  41205  evlselv  41207  extoimad  42964  imo72b2lem0  42965  imo72b2lem1  42969  fcores  45825  fcoresf1lem  45826
  Copyright terms: Public domain W3C validator