MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco3d Structured version   Visualization version   GIF version

Theorem fvco3d 6997
Description: Value of a function composition. Deduction form of fvco3 6996. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fvco3d.1 (𝜑𝐺:𝐴𝐵)
fvco3d.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
fvco3d (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))

Proof of Theorem fvco3d
StepHypRef Expression
1 fvco3d.1 . 2 (𝜑𝐺:𝐴𝐵)
2 fvco3d.2 . 2 (𝜑𝐶𝐴)
3 fvco3 6996 . 2 ((𝐺:𝐴𝐵𝐶𝐴) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
41, 2, 3syl2anc 582 1 (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  ccom 5682  wf 6545  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557
This theorem is referenced by:  opco1  8128  opco2  8129  suppcoss  8213  wemapwe  9722  canthp1lem2  10678  yonedainv  18276  frgpcyg  21524  psdmplcl  22109  rhmcomulmpl  22326  comet  24466  dvcobr  25921  gsumpart  32859  pmtrcnel  32902  subfacp1lem5  34922  metakunt33  41820  rhmcomulpsr  41916  selvvvval  41950  evlselv  41952  extoimad  43733  imo72b2lem0  43734  imo72b2lem1  43738  fcores  46584  fcoresf1lem  46585  grimco  47361
  Copyright terms: Public domain W3C validator