| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco3d | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Deduction form of fvco3 6916. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| fvco3d.1 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| fvco3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvco3d | ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco3d.1 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 2 | fvco3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | fvco3 6916 | . 2 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∘ ccom 5615 ⟶wf 6472 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 |
| This theorem is referenced by: opco1 8048 opco2 8049 suppcoss 8132 wemapwe 9582 canthp1lem2 10539 yonedainv 18182 frgpcyg 21505 psdmplcl 22072 rhmcomulmpl 22292 comet 24423 dvcobr 25871 ofrco 32585 constcof 32596 gsumpart 33029 pmtrcnel 33050 elrgspnlem1 33201 esplymhp 33581 esplyfv1 33582 esplyfv 33583 subfacp1lem5 35220 aks5lem3a 42222 rhmcomulpsr 42584 selvvvval 42618 evlselv 42620 extoimad 44197 imo72b2lem0 44198 imo72b2lem1 44202 fcores 47098 fcoresf1lem 47099 grimco 47920 upgrimwlklem5 47932 upgrimpthslem2 47939 upgrimcycls 47942 uspgrlimlem3 48021 fuco111x 49363 fuco112xa 49365 fuco11idx 49367 fuco22natlem3 49376 fuco22natlem 49377 fucoid 49380 fucocolem4 49388 fucolid 49393 fucorid 49394 precofvallem 49398 prcof22a 49424 |
| Copyright terms: Public domain | W3C validator |