| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fences | Structured version Visualization version GIF version | ||
| Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet 38803) generate a partition of the members. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| fences | ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mainer 38798 | . 2 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) | |
| 2 | mpet 38803 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ErALTV werALTV 38171 CoMembEr wcomember 38173 MembPart wmembpart 38186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8719 df-qs 8723 df-coss 38375 df-coels 38376 df-refrel 38476 df-cnvrefrel 38491 df-symrel 38508 df-trrel 38538 df-eqvrel 38549 df-coeleqvrel 38551 df-dmqs 38603 df-erALTV 38628 df-comember 38630 df-funALTV 38646 df-disjALTV 38669 df-eldisj 38671 df-part 38730 df-membpart 38732 |
| This theorem is referenced by: fences2 38809 |
| Copyright terms: Public domain | W3C validator |