![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fences | Structured version Visualization version GIF version |
Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet 38311) generate a partition of the members. (Contributed by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
fences | ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mainer 38306 | . 2 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) | |
2 | mpet 38311 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ErALTV werALTV 37674 CoMembEr wcomember 37676 MembPart wmembpart 37689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-eprel 5582 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ec 8727 df-qs 8731 df-coss 37883 df-coels 37884 df-refrel 37984 df-cnvrefrel 37999 df-symrel 38016 df-trrel 38046 df-eqvrel 38057 df-coeleqvrel 38059 df-dmqs 38111 df-erALTV 38136 df-comember 38138 df-funALTV 38154 df-disjALTV 38177 df-eldisj 38179 df-part 38238 df-membpart 38240 |
This theorem is referenced by: fences2 38317 |
Copyright terms: Public domain | W3C validator |