Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fences Structured version   Visualization version   GIF version

Theorem fences 38218
Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet 38213) generate a partition of the members. (Contributed by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
fences (𝑅 ErALTV 𝐴 → MembPart 𝐴)

Proof of Theorem fences
StepHypRef Expression
1 mainer 38208 . 2 (𝑅 ErALTV 𝐴 → CoMembEr 𝐴)
2 mpet 38213 . 2 ( MembPart 𝐴 ↔ CoMembEr 𝐴)
31, 2sylibr 233 1 (𝑅 ErALTV 𝐴 → MembPart 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   ErALTV werALTV 37573   CoMembEr wcomember 37575   MembPart wmembpart 37588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-eprel 5571  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8702  df-qs 8706  df-coss 37785  df-coels 37786  df-refrel 37886  df-cnvrefrel 37901  df-symrel 37918  df-trrel 37948  df-eqvrel 37959  df-coeleqvrel 37961  df-dmqs 38013  df-erALTV 38038  df-comember 38040  df-funALTV 38056  df-disjALTV 38079  df-eldisj 38081  df-part 38140  df-membpart 38142
This theorem is referenced by:  fences2  38219
  Copyright terms: Public domain W3C validator