![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fences | Structured version Visualization version GIF version |
Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet 38213) generate a partition of the members. (Contributed by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
fences | ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mainer 38208 | . 2 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) | |
2 | mpet 38213 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ErALTV werALTV 37573 CoMembEr wcomember 37575 MembPart wmembpart 37588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-eprel 5571 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8702 df-qs 8706 df-coss 37785 df-coels 37786 df-refrel 37886 df-cnvrefrel 37901 df-symrel 37918 df-trrel 37948 df-eqvrel 37959 df-coeleqvrel 37961 df-dmqs 38013 df-erALTV 38038 df-comember 38040 df-funALTV 38056 df-disjALTV 38079 df-eldisj 38081 df-part 38140 df-membpart 38142 |
This theorem is referenced by: fences2 38219 |
Copyright terms: Public domain | W3C validator |