![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fences | Structured version Visualization version GIF version |
Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet 38787) generate a partition of the members. (Contributed by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
fences | ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mainer 38782 | . 2 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) | |
2 | mpet 38787 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ErALTV werALTV 38153 CoMembEr wcomember 38155 MembPart wmembpart 38168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-eprel 5599 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-ec 8759 df-qs 8763 df-coss 38359 df-coels 38360 df-refrel 38460 df-cnvrefrel 38475 df-symrel 38492 df-trrel 38522 df-eqvrel 38533 df-coeleqvrel 38535 df-dmqs 38587 df-erALTV 38612 df-comember 38614 df-funALTV 38630 df-disjALTV 38653 df-eldisj 38655 df-part 38714 df-membpart 38716 |
This theorem is referenced by: fences2 38793 |
Copyright terms: Public domain | W3C validator |