Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fences | Structured version Visualization version GIF version |
Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet 37057) generate a partition of the members. (Contributed by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
fences | ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mainer 37052 | . 2 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) | |
2 | mpet 37057 | . 2 ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝑅 ErALTV 𝐴 → MembPart 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ErALTV werALTV 36415 CoMembEr wcomember 36417 MembPart wmembpart 36430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-eprel 5513 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ec 8548 df-qs 8552 df-coss 36629 df-coels 36630 df-refrel 36730 df-cnvrefrel 36745 df-symrel 36762 df-trrel 36792 df-eqvrel 36803 df-coeleqvrel 36805 df-dmqs 36857 df-erALTV 36882 df-comember 36884 df-funALTV 36900 df-disjALTV 36923 df-eldisj 36925 df-part 36984 df-membpart 36986 |
This theorem is referenced by: fences2 37063 |
Copyright terms: Public domain | W3C validator |