![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlreslem | Structured version Visualization version GIF version |
Description: Lemma for trlres 28946. Formerly part of proof of eupthres 29457. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
trlres.v | β’ π = (VtxβπΊ) |
trlres.i | β’ πΌ = (iEdgβπΊ) |
trlres.d | β’ (π β πΉ(TrailsβπΊ)π) |
trlres.n | β’ (π β π β (0..^(β―βπΉ))) |
trlres.h | β’ π» = (πΉ prefix π) |
Ref | Expression |
---|---|
trlreslem | β’ (π β π»:(0..^(β―βπ»))β1-1-ontoβdom (πΌ βΎ (πΉ β (0..^π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlres.d | . . . 4 β’ (π β πΉ(TrailsβπΊ)π) | |
2 | trlres.i | . . . . 5 β’ πΌ = (iEdgβπΊ) | |
3 | 2 | trlf1 28944 | . . . 4 β’ (πΉ(TrailsβπΊ)π β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
4 | 1, 3 | syl 17 | . . 3 β’ (π β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
5 | trlres.n | . . . 4 β’ (π β π β (0..^(β―βπΉ))) | |
6 | elfzouz2 13643 | . . . 4 β’ (π β (0..^(β―βπΉ)) β (β―βπΉ) β (β€β₯βπ)) | |
7 | fzoss2 13656 | . . . 4 β’ ((β―βπΉ) β (β€β₯βπ) β (0..^π) β (0..^(β―βπΉ))) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 β’ (π β (0..^π) β (0..^(β―βπΉ))) |
9 | f1ores 6844 | . . 3 β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ (0..^π) β (0..^(β―βπΉ))) β (πΉ βΎ (0..^π)):(0..^π)β1-1-ontoβ(πΉ β (0..^π))) | |
10 | 4, 8, 9 | syl2anc 584 | . 2 β’ (π β (πΉ βΎ (0..^π)):(0..^π)β1-1-ontoβ(πΉ β (0..^π))) |
11 | trlres.h | . . . 4 β’ π» = (πΉ prefix π) | |
12 | trliswlk 28943 | . . . . . 6 β’ (πΉ(TrailsβπΊ)π β πΉ(WalksβπΊ)π) | |
13 | 2 | wlkf 28860 | . . . . . 6 β’ (πΉ(WalksβπΊ)π β πΉ β Word dom πΌ) |
14 | 1, 12, 13 | 3syl 18 | . . . . 5 β’ (π β πΉ β Word dom πΌ) |
15 | fzossfz 13647 | . . . . . 6 β’ (0..^(β―βπΉ)) β (0...(β―βπΉ)) | |
16 | 15, 5 | sselid 3979 | . . . . 5 β’ (π β π β (0...(β―βπΉ))) |
17 | pfxres 14625 | . . . . 5 β’ ((πΉ β Word dom πΌ β§ π β (0...(β―βπΉ))) β (πΉ prefix π) = (πΉ βΎ (0..^π))) | |
18 | 14, 16, 17 | syl2anc 584 | . . . 4 β’ (π β (πΉ prefix π) = (πΉ βΎ (0..^π))) |
19 | 11, 18 | eqtrid 2784 | . . 3 β’ (π β π» = (πΉ βΎ (0..^π))) |
20 | 11 | fveq2i 6891 | . . . . 5 β’ (β―βπ») = (β―β(πΉ prefix π)) |
21 | elfzofz 13644 | . . . . . . 7 β’ (π β (0..^(β―βπΉ)) β π β (0...(β―βπΉ))) | |
22 | 5, 21 | syl 17 | . . . . . 6 β’ (π β π β (0...(β―βπΉ))) |
23 | pfxlen 14629 | . . . . . 6 β’ ((πΉ β Word dom πΌ β§ π β (0...(β―βπΉ))) β (β―β(πΉ prefix π)) = π) | |
24 | 14, 22, 23 | syl2anc 584 | . . . . 5 β’ (π β (β―β(πΉ prefix π)) = π) |
25 | 20, 24 | eqtrid 2784 | . . . 4 β’ (π β (β―βπ») = π) |
26 | 25 | oveq2d 7421 | . . 3 β’ (π β (0..^(β―βπ»)) = (0..^π)) |
27 | wrdf 14465 | . . . . . 6 β’ (πΉ β Word dom πΌ β πΉ:(0..^(β―βπΉ))βΆdom πΌ) | |
28 | fimass 6735 | . . . . . 6 β’ (πΉ:(0..^(β―βπΉ))βΆdom πΌ β (πΉ β (0..^π)) β dom πΌ) | |
29 | 13, 27, 28 | 3syl 18 | . . . . 5 β’ (πΉ(WalksβπΊ)π β (πΉ β (0..^π)) β dom πΌ) |
30 | 1, 12, 29 | 3syl 18 | . . . 4 β’ (π β (πΉ β (0..^π)) β dom πΌ) |
31 | ssdmres 6002 | . . . 4 β’ ((πΉ β (0..^π)) β dom πΌ β dom (πΌ βΎ (πΉ β (0..^π))) = (πΉ β (0..^π))) | |
32 | 30, 31 | sylib 217 | . . 3 β’ (π β dom (πΌ βΎ (πΉ β (0..^π))) = (πΉ β (0..^π))) |
33 | 19, 26, 32 | f1oeq123d 6824 | . 2 β’ (π β (π»:(0..^(β―βπ»))β1-1-ontoβdom (πΌ βΎ (πΉ β (0..^π))) β (πΉ βΎ (0..^π)):(0..^π)β1-1-ontoβ(πΉ β (0..^π)))) |
34 | 10, 33 | mpbird 256 | 1 β’ (π β π»:(0..^(β―βπ»))β1-1-ontoβdom (πΌ βΎ (πΉ β (0..^π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3947 class class class wbr 5147 dom cdm 5675 βΎ cres 5677 β cima 5678 βΆwf 6536 β1-1βwf1 6537 β1-1-ontoβwf1o 6539 βcfv 6540 (class class class)co 7405 0cc0 11106 β€β₯cuz 12818 ...cfz 13480 ..^cfzo 13623 β―chash 14286 Word cword 14460 prefix cpfx 14616 Vtxcvtx 28245 iEdgciedg 28246 Walkscwlks 28842 Trailsctrls 28936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-substr 14587 df-pfx 14617 df-wlks 28845 df-trls 28938 |
This theorem is referenced by: trlres 28946 eupthres 29457 |
Copyright terms: Public domain | W3C validator |