![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlreslem | Structured version Visualization version GIF version |
Description: Lemma for trlres 28937. Formerly part of proof of eupthres 29448. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
trlres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlres.d | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlres.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
Ref | Expression |
---|---|
trlreslem | ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlres.d | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
2 | trlres.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 2 | trlf1 28935 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
5 | trlres.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
6 | elfzouz2 13643 | . . . 4 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ≥‘𝑁)) | |
7 | fzoss2 13656 | . . . 4 ⊢ ((♯‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
9 | f1ores 6844 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) | |
10 | 4, 8, 9 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) |
11 | trlres.h | . . . 4 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
12 | trliswlk 28934 | . . . . . 6 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
13 | 2 | wlkf 28851 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
14 | 1, 12, 13 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
15 | fzossfz 13647 | . . . . . 6 ⊢ (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) | |
16 | 15, 5 | sselid 3979 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
17 | pfxres 14625 | . . . . 5 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) | |
18 | 14, 16, 17 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
19 | 11, 18 | eqtrid 2785 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ↾ (0..^𝑁))) |
20 | 11 | fveq2i 6891 | . . . . 5 ⊢ (♯‘𝐻) = (♯‘(𝐹 prefix 𝑁)) |
21 | elfzofz 13644 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹))) | |
22 | 5, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
23 | pfxlen 14629 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁) | |
24 | 14, 22, 23 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
25 | 20, 24 | eqtrid 2785 | . . . 4 ⊢ (𝜑 → (♯‘𝐻) = 𝑁) |
26 | 25 | oveq2d 7420 | . . 3 ⊢ (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁)) |
27 | wrdf 14465 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
28 | fimass 6735 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) | |
29 | 13, 27, 28 | 3syl 18 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
30 | 1, 12, 29 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
31 | ssdmres 6002 | . . . 4 ⊢ ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) | |
32 | 30, 31 | sylib 217 | . . 3 ⊢ (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) |
33 | 19, 26, 32 | f1oeq123d 6824 | . 2 ⊢ (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))) |
34 | 10, 33 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⊆ wss 3947 class class class wbr 5147 dom cdm 5675 ↾ cres 5677 “ cima 5678 ⟶wf 6536 –1-1→wf1 6537 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7404 0cc0 11106 ℤ≥cuz 12818 ...cfz 13480 ..^cfzo 13623 ♯chash 14286 Word cword 14460 prefix cpfx 14616 Vtxcvtx 28236 iEdgciedg 28237 Walkscwlks 28833 Trailsctrls 28927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-substr 14587 df-pfx 14617 df-wlks 28836 df-trls 28929 |
This theorem is referenced by: trlres 28937 eupthres 29448 |
Copyright terms: Public domain | W3C validator |