![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlreslem | Structured version Visualization version GIF version |
Description: Lemma for trlres 29466. Formerly part of proof of eupthres 29977. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
trlres.v | β’ π = (VtxβπΊ) |
trlres.i | β’ πΌ = (iEdgβπΊ) |
trlres.d | β’ (π β πΉ(TrailsβπΊ)π) |
trlres.n | β’ (π β π β (0..^(β―βπΉ))) |
trlres.h | β’ π» = (πΉ prefix π) |
Ref | Expression |
---|---|
trlreslem | β’ (π β π»:(0..^(β―βπ»))β1-1-ontoβdom (πΌ βΎ (πΉ β (0..^π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlres.d | . . . 4 β’ (π β πΉ(TrailsβπΊ)π) | |
2 | trlres.i | . . . . 5 β’ πΌ = (iEdgβπΊ) | |
3 | 2 | trlf1 29464 | . . . 4 β’ (πΉ(TrailsβπΊ)π β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
4 | 1, 3 | syl 17 | . . 3 β’ (π β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
5 | trlres.n | . . . 4 β’ (π β π β (0..^(β―βπΉ))) | |
6 | elfzouz2 13653 | . . . 4 β’ (π β (0..^(β―βπΉ)) β (β―βπΉ) β (β€β₯βπ)) | |
7 | fzoss2 13666 | . . . 4 β’ ((β―βπΉ) β (β€β₯βπ) β (0..^π) β (0..^(β―βπΉ))) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 β’ (π β (0..^π) β (0..^(β―βπΉ))) |
9 | f1ores 6841 | . . 3 β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ (0..^π) β (0..^(β―βπΉ))) β (πΉ βΎ (0..^π)):(0..^π)β1-1-ontoβ(πΉ β (0..^π))) | |
10 | 4, 8, 9 | syl2anc 583 | . 2 β’ (π β (πΉ βΎ (0..^π)):(0..^π)β1-1-ontoβ(πΉ β (0..^π))) |
11 | trlres.h | . . . 4 β’ π» = (πΉ prefix π) | |
12 | trliswlk 29463 | . . . . . 6 β’ (πΉ(TrailsβπΊ)π β πΉ(WalksβπΊ)π) | |
13 | 2 | wlkf 29380 | . . . . . 6 β’ (πΉ(WalksβπΊ)π β πΉ β Word dom πΌ) |
14 | 1, 12, 13 | 3syl 18 | . . . . 5 β’ (π β πΉ β Word dom πΌ) |
15 | fzossfz 13657 | . . . . . 6 β’ (0..^(β―βπΉ)) β (0...(β―βπΉ)) | |
16 | 15, 5 | sselid 3975 | . . . . 5 β’ (π β π β (0...(β―βπΉ))) |
17 | pfxres 14635 | . . . . 5 β’ ((πΉ β Word dom πΌ β§ π β (0...(β―βπΉ))) β (πΉ prefix π) = (πΉ βΎ (0..^π))) | |
18 | 14, 16, 17 | syl2anc 583 | . . . 4 β’ (π β (πΉ prefix π) = (πΉ βΎ (0..^π))) |
19 | 11, 18 | eqtrid 2778 | . . 3 β’ (π β π» = (πΉ βΎ (0..^π))) |
20 | 11 | fveq2i 6888 | . . . . 5 β’ (β―βπ») = (β―β(πΉ prefix π)) |
21 | elfzofz 13654 | . . . . . . 7 β’ (π β (0..^(β―βπΉ)) β π β (0...(β―βπΉ))) | |
22 | 5, 21 | syl 17 | . . . . . 6 β’ (π β π β (0...(β―βπΉ))) |
23 | pfxlen 14639 | . . . . . 6 β’ ((πΉ β Word dom πΌ β§ π β (0...(β―βπΉ))) β (β―β(πΉ prefix π)) = π) | |
24 | 14, 22, 23 | syl2anc 583 | . . . . 5 β’ (π β (β―β(πΉ prefix π)) = π) |
25 | 20, 24 | eqtrid 2778 | . . . 4 β’ (π β (β―βπ») = π) |
26 | 25 | oveq2d 7421 | . . 3 β’ (π β (0..^(β―βπ»)) = (0..^π)) |
27 | wrdf 14475 | . . . . . 6 β’ (πΉ β Word dom πΌ β πΉ:(0..^(β―βπΉ))βΆdom πΌ) | |
28 | fimass 6732 | . . . . . 6 β’ (πΉ:(0..^(β―βπΉ))βΆdom πΌ β (πΉ β (0..^π)) β dom πΌ) | |
29 | 13, 27, 28 | 3syl 18 | . . . . 5 β’ (πΉ(WalksβπΊ)π β (πΉ β (0..^π)) β dom πΌ) |
30 | 1, 12, 29 | 3syl 18 | . . . 4 β’ (π β (πΉ β (0..^π)) β dom πΌ) |
31 | ssdmres 5998 | . . . 4 β’ ((πΉ β (0..^π)) β dom πΌ β dom (πΌ βΎ (πΉ β (0..^π))) = (πΉ β (0..^π))) | |
32 | 30, 31 | sylib 217 | . . 3 β’ (π β dom (πΌ βΎ (πΉ β (0..^π))) = (πΉ β (0..^π))) |
33 | 19, 26, 32 | f1oeq123d 6821 | . 2 β’ (π β (π»:(0..^(β―βπ»))β1-1-ontoβdom (πΌ βΎ (πΉ β (0..^π))) β (πΉ βΎ (0..^π)):(0..^π)β1-1-ontoβ(πΉ β (0..^π)))) |
34 | 10, 33 | mpbird 257 | 1 β’ (π β π»:(0..^(β―βπ»))β1-1-ontoβdom (πΌ βΎ (πΉ β (0..^π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3943 class class class wbr 5141 dom cdm 5669 βΎ cres 5671 β cima 5672 βΆwf 6533 β1-1βwf1 6534 β1-1-ontoβwf1o 6536 βcfv 6537 (class class class)co 7405 0cc0 11112 β€β₯cuz 12826 ...cfz 13490 ..^cfzo 13633 β―chash 14295 Word cword 14470 prefix cpfx 14626 Vtxcvtx 28764 iEdgciedg 28765 Walkscwlks 29362 Trailsctrls 29456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-hash 14296 df-word 14471 df-substr 14597 df-pfx 14627 df-wlks 29365 df-trls 29458 |
This theorem is referenced by: trlres 29466 eupthres 29977 |
Copyright terms: Public domain | W3C validator |