MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlreslem Structured version   Visualization version   GIF version

Theorem trlreslem 29601
Description: Lemma for trlres 29602. Formerly part of proof of eupthres 30117. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
trlres.v 𝑉 = (Vtx‘𝐺)
trlres.i 𝐼 = (iEdg‘𝐺)
trlres.d (𝜑𝐹(Trails‘𝐺)𝑃)
trlres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlres.h 𝐻 = (𝐹 prefix 𝑁)
Assertion
Ref Expression
trlreslem (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))

Proof of Theorem trlreslem
StepHypRef Expression
1 trlres.d . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
2 trlres.i . . . . 5 𝐼 = (iEdg‘𝐺)
32trlf1 29600 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
41, 3syl 17 . . 3 (𝜑𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
5 trlres.n . . . 4 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
6 elfzouz2 13611 . . . 4 (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
7 fzoss2 13624 . . . 4 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
85, 6, 73syl 18 . . 3 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
9 f1ores 6796 . . 3 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))
104, 8, 9syl2anc 584 . 2 (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))
11 trlres.h . . . 4 𝐻 = (𝐹 prefix 𝑁)
12 trliswlk 29599 . . . . . 6 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
132wlkf 29518 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
141, 12, 133syl 18 . . . . 5 (𝜑𝐹 ∈ Word dom 𝐼)
15 fzossfz 13615 . . . . . 6 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
1615, 5sselid 3941 . . . . 5 (𝜑𝑁 ∈ (0...(♯‘𝐹)))
17 pfxres 14620 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1814, 16, 17syl2anc 584 . . . 4 (𝜑 → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1911, 18eqtrid 2776 . . 3 (𝜑𝐻 = (𝐹 ↾ (0..^𝑁)))
2011fveq2i 6843 . . . . 5 (♯‘𝐻) = (♯‘(𝐹 prefix 𝑁))
21 elfzofz 13612 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹)))
225, 21syl 17 . . . . . 6 (𝜑𝑁 ∈ (0...(♯‘𝐹)))
23 pfxlen 14624 . . . . . 6 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2414, 22, 23syl2anc 584 . . . . 5 (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2520, 24eqtrid 2776 . . . 4 (𝜑 → (♯‘𝐻) = 𝑁)
2625oveq2d 7385 . . 3 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
27 wrdf 14459 . . . . . 6 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
28 fimass 6690 . . . . . 6 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
2913, 27, 283syl 18 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
301, 12, 293syl 18 . . . 4 (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
31 ssdmres 5973 . . . 4 ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
3230, 31sylib 218 . . 3 (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
3319, 26, 32f1oeq123d 6776 . 2 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))))
3410, 33mpbird 257 1 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911   class class class wbr 5102  dom cdm 5631  cres 5633  cima 5634  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  cuz 12769  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454   prefix cpfx 14611  Vtxcvtx 28899  iEdgciedg 28900  Walkscwlks 29500  Trailsctrls 29592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-substr 14582  df-pfx 14612  df-wlks 29503  df-trls 29594
This theorem is referenced by:  trlres  29602  eupthres  30117
  Copyright terms: Public domain W3C validator