MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlreslem Structured version   Visualization version   GIF version

Theorem trlreslem 29627
Description: Lemma for trlres 29628. Formerly part of proof of eupthres 30144. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
trlres.v 𝑉 = (Vtx‘𝐺)
trlres.i 𝐼 = (iEdg‘𝐺)
trlres.d (𝜑𝐹(Trails‘𝐺)𝑃)
trlres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlres.h 𝐻 = (𝐹 prefix 𝑁)
Assertion
Ref Expression
trlreslem (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))

Proof of Theorem trlreslem
StepHypRef Expression
1 trlres.d . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
2 trlres.i . . . . 5 𝐼 = (iEdg‘𝐺)
32trlf1 29626 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
41, 3syl 17 . . 3 (𝜑𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
5 trlres.n . . . 4 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
6 elfzouz2 13635 . . . 4 (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
7 fzoss2 13648 . . . 4 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
85, 6, 73syl 18 . . 3 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
9 f1ores 6814 . . 3 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))
104, 8, 9syl2anc 584 . 2 (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))
11 trlres.h . . . 4 𝐻 = (𝐹 prefix 𝑁)
12 trliswlk 29625 . . . . . 6 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
132wlkf 29542 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
141, 12, 133syl 18 . . . . 5 (𝜑𝐹 ∈ Word dom 𝐼)
15 fzossfz 13639 . . . . . 6 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
1615, 5sselid 3944 . . . . 5 (𝜑𝑁 ∈ (0...(♯‘𝐹)))
17 pfxres 14644 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1814, 16, 17syl2anc 584 . . . 4 (𝜑 → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1911, 18eqtrid 2776 . . 3 (𝜑𝐻 = (𝐹 ↾ (0..^𝑁)))
2011fveq2i 6861 . . . . 5 (♯‘𝐻) = (♯‘(𝐹 prefix 𝑁))
21 elfzofz 13636 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹)))
225, 21syl 17 . . . . . 6 (𝜑𝑁 ∈ (0...(♯‘𝐹)))
23 pfxlen 14648 . . . . . 6 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2414, 22, 23syl2anc 584 . . . . 5 (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2520, 24eqtrid 2776 . . . 4 (𝜑 → (♯‘𝐻) = 𝑁)
2625oveq2d 7403 . . 3 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
27 wrdf 14483 . . . . . 6 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
28 fimass 6708 . . . . . 6 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
2913, 27, 283syl 18 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
301, 12, 293syl 18 . . . 4 (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
31 ssdmres 5984 . . . 4 ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
3230, 31sylib 218 . . 3 (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
3319, 26, 32f1oeq123d 6794 . 2 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))))
3410, 33mpbird 257 1 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  dom cdm 5638  cres 5640  cima 5641  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  0cc0 11068  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   prefix cpfx 14635  Vtxcvtx 28923  iEdgciedg 28924  Walkscwlks 29524  Trailsctrls 29618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-substr 14606  df-pfx 14636  df-wlks 29527  df-trls 29620
This theorem is referenced by:  trlres  29628  eupthres  30144
  Copyright terms: Public domain W3C validator