| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlreslem | Structured version Visualization version GIF version | ||
| Description: Lemma for trlres 29602. Formerly part of proof of eupthres 30117. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| Ref | Expression |
|---|---|
| trlres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlres.d | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlres.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
| Ref | Expression |
|---|---|
| trlreslem | ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlres.d | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | trlres.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 2 | trlf1 29600 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
| 5 | trlres.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 6 | elfzouz2 13611 | . . . 4 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ≥‘𝑁)) | |
| 7 | fzoss2 13624 | . . . 4 ⊢ ((♯‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
| 9 | f1ores 6796 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) | |
| 10 | 4, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) |
| 11 | trlres.h | . . . 4 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
| 12 | trliswlk 29599 | . . . . . 6 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 13 | 2 | wlkf 29518 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 14 | 1, 12, 13 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 15 | fzossfz 13615 | . . . . . 6 ⊢ (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) | |
| 16 | 15, 5 | sselid 3941 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
| 17 | pfxres 14620 | . . . . 5 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) | |
| 18 | 14, 16, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
| 19 | 11, 18 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ↾ (0..^𝑁))) |
| 20 | 11 | fveq2i 6843 | . . . . 5 ⊢ (♯‘𝐻) = (♯‘(𝐹 prefix 𝑁)) |
| 21 | elfzofz 13612 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹))) | |
| 22 | 5, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
| 23 | pfxlen 14624 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁) | |
| 24 | 14, 22, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
| 25 | 20, 24 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → (♯‘𝐻) = 𝑁) |
| 26 | 25 | oveq2d 7385 | . . 3 ⊢ (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁)) |
| 27 | wrdf 14459 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
| 28 | fimass 6690 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) | |
| 29 | 13, 27, 28 | 3syl 18 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
| 30 | 1, 12, 29 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
| 31 | ssdmres 5973 | . . . 4 ⊢ ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) | |
| 32 | 30, 31 | sylib 218 | . . 3 ⊢ (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) |
| 33 | 19, 26, 32 | f1oeq123d 6776 | . 2 ⊢ (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))) |
| 34 | 10, 33 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 dom cdm 5631 ↾ cres 5633 “ cima 5634 ⟶wf 6495 –1-1→wf1 6496 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ℤ≥cuz 12769 ...cfz 13444 ..^cfzo 13591 ♯chash 14271 Word cword 14454 prefix cpfx 14611 Vtxcvtx 28899 iEdgciedg 28900 Walkscwlks 29500 Trailsctrls 29592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-substr 14582 df-pfx 14612 df-wlks 29503 df-trls 29594 |
| This theorem is referenced by: trlres 29602 eupthres 30117 |
| Copyright terms: Public domain | W3C validator |