MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlreslem Structured version   Visualization version   GIF version

Theorem trlreslem 29735
Description: Lemma for trlres 29736. Formerly part of proof of eupthres 30247. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
trlres.v 𝑉 = (Vtx‘𝐺)
trlres.i 𝐼 = (iEdg‘𝐺)
trlres.d (𝜑𝐹(Trails‘𝐺)𝑃)
trlres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlres.h 𝐻 = (𝐹 prefix 𝑁)
Assertion
Ref Expression
trlreslem (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))

Proof of Theorem trlreslem
StepHypRef Expression
1 trlres.d . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
2 trlres.i . . . . 5 𝐼 = (iEdg‘𝐺)
32trlf1 29734 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
41, 3syl 17 . . 3 (𝜑𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
5 trlres.n . . . 4 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
6 elfzouz2 13731 . . . 4 (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
7 fzoss2 13744 . . . 4 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
85, 6, 73syl 18 . . 3 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
9 f1ores 6876 . . 3 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))
104, 8, 9syl2anc 583 . 2 (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))
11 trlres.h . . . 4 𝐻 = (𝐹 prefix 𝑁)
12 trliswlk 29733 . . . . . 6 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
132wlkf 29650 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
141, 12, 133syl 18 . . . . 5 (𝜑𝐹 ∈ Word dom 𝐼)
15 fzossfz 13735 . . . . . 6 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
1615, 5sselid 4006 . . . . 5 (𝜑𝑁 ∈ (0...(♯‘𝐹)))
17 pfxres 14727 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1814, 16, 17syl2anc 583 . . . 4 (𝜑 → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1911, 18eqtrid 2792 . . 3 (𝜑𝐻 = (𝐹 ↾ (0..^𝑁)))
2011fveq2i 6923 . . . . 5 (♯‘𝐻) = (♯‘(𝐹 prefix 𝑁))
21 elfzofz 13732 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹)))
225, 21syl 17 . . . . . 6 (𝜑𝑁 ∈ (0...(♯‘𝐹)))
23 pfxlen 14731 . . . . . 6 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2414, 22, 23syl2anc 583 . . . . 5 (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2520, 24eqtrid 2792 . . . 4 (𝜑 → (♯‘𝐻) = 𝑁)
2625oveq2d 7464 . . 3 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
27 wrdf 14567 . . . . . 6 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
28 fimass 6767 . . . . . 6 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
2913, 27, 283syl 18 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
301, 12, 293syl 18 . . . 4 (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
31 ssdmres 6042 . . . 4 ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
3230, 31sylib 218 . . 3 (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
3319, 26, 32f1oeq123d 6856 . 2 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))))
3410, 33mpbird 257 1 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wss 3976   class class class wbr 5166  dom cdm 5700  cres 5702  cima 5703  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  cuz 12903  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   prefix cpfx 14718  Vtxcvtx 29031  iEdgciedg 29032  Walkscwlks 29632  Trailsctrls 29726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-substr 14689  df-pfx 14719  df-wlks 29635  df-trls 29728
This theorem is referenced by:  trlres  29736  eupthres  30247
  Copyright terms: Public domain W3C validator