MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaelfm Structured version   Visualization version   GIF version

Theorem imaelfm 23838
Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
imaelfm.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
imaelfm (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → (𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵))

Proof of Theorem imaelfm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fimass 6708 . . . 4 (𝐹:𝑌𝑋 → (𝐹𝑆) ⊆ 𝑋)
213ad2ant3 1135 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑆) ⊆ 𝑋)
3 ssid 3969 . . . 4 (𝐹𝑆) ⊆ (𝐹𝑆)
4 imaeq2 6027 . . . . . 6 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
54sseq1d 3978 . . . . 5 (𝑥 = 𝑆 → ((𝐹𝑥) ⊆ (𝐹𝑆) ↔ (𝐹𝑆) ⊆ (𝐹𝑆)))
65rspcev 3588 . . . 4 ((𝑆𝐿 ∧ (𝐹𝑆) ⊆ (𝐹𝑆)) → ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))
73, 6mpan2 691 . . 3 (𝑆𝐿 → ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))
82, 7anim12i 613 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆)))
9 imaelfm.l . . . 4 𝐿 = (𝑌filGen𝐵)
109elfm2 23835 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))))
1110adantr 480 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → ((𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))))
128, 11mpbird 257 1 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → (𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3914  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  fBascfbas 21252  filGencfg 21253   FilMap cfm 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fbas 21261  df-fg 21262  df-fm 23825
This theorem is referenced by:  rnelfm  23840  fmfnfmlem2  23842  fmfnfmlem4  23844  fmfnfm  23845  fmco  23848  isfcf  23921  cnextcn  23954
  Copyright terms: Public domain W3C validator