| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaelfm | Structured version Visualization version GIF version | ||
| Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| imaelfm.l | ⊢ 𝐿 = (𝑌filGen𝐵) |
| Ref | Expression |
|---|---|
| imaelfm | ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimass 6711 | . . . 4 ⊢ (𝐹:𝑌⟶𝑋 → (𝐹 “ 𝑆) ⊆ 𝑋) | |
| 2 | 1 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑆) ⊆ 𝑋) |
| 3 | ssid 3972 | . . . 4 ⊢ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆) | |
| 4 | imaeq2 6030 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝐹 “ 𝑥) = (𝐹 “ 𝑆)) | |
| 5 | 4 | sseq1d 3981 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆) ↔ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆))) |
| 6 | 5 | rspcev 3591 | . . . 4 ⊢ ((𝑆 ∈ 𝐿 ∧ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆)) → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
| 7 | 3, 6 | mpan2 691 | . . 3 ⊢ (𝑆 ∈ 𝐿 → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
| 8 | 2, 7 | anim12i 613 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆))) |
| 9 | imaelfm.l | . . . 4 ⊢ 𝐿 = (𝑌filGen𝐵) | |
| 10 | 9 | elfm2 23842 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
| 11 | 10 | adantr 480 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
| 12 | 8, 11 | mpbird 257 | 1 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 fBascfbas 21259 filGencfg 21260 FilMap cfm 23827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-fbas 21268 df-fg 21269 df-fm 23832 |
| This theorem is referenced by: rnelfm 23847 fmfnfmlem2 23849 fmfnfmlem4 23851 fmfnfm 23852 fmco 23855 isfcf 23928 cnextcn 23961 |
| Copyright terms: Public domain | W3C validator |