![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaelfm | Structured version Visualization version GIF version |
Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
imaelfm.l | ⊢ 𝐿 = (𝑌filGen𝐵) |
Ref | Expression |
---|---|
imaelfm | ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimass 6726 | . . . 4 ⊢ (𝐹:𝑌⟶𝑋 → (𝐹 “ 𝑆) ⊆ 𝑋) | |
2 | 1 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑆) ⊆ 𝑋) |
3 | ssid 4001 | . . . 4 ⊢ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆) | |
4 | imaeq2 6046 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝐹 “ 𝑥) = (𝐹 “ 𝑆)) | |
5 | 4 | sseq1d 4010 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆) ↔ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆))) |
6 | 5 | rspcev 3610 | . . . 4 ⊢ ((𝑆 ∈ 𝐿 ∧ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆)) → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
7 | 3, 6 | mpan2 689 | . . 3 ⊢ (𝑆 ∈ 𝐿 → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
8 | 2, 7 | anim12i 613 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆))) |
9 | imaelfm.l | . . . 4 ⊢ 𝐿 = (𝑌filGen𝐵) | |
10 | 9 | elfm2 23383 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
11 | 10 | adantr 481 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
12 | 8, 11 | mpbird 256 | 1 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ⊆ wss 3945 “ cima 5673 ⟶wf 6529 ‘cfv 6533 (class class class)co 7394 fBascfbas 20868 filGencfg 20869 FilMap cfm 23368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7397 df-oprab 7398 df-mpo 7399 df-fbas 20877 df-fg 20878 df-fm 23373 |
This theorem is referenced by: rnelfm 23388 fmfnfmlem2 23390 fmfnfmlem4 23392 fmfnfm 23393 fmco 23396 isfcf 23469 cnextcn 23502 |
Copyright terms: Public domain | W3C validator |