MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaelfm Structured version   Visualization version   GIF version

Theorem imaelfm 22243
Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
imaelfm.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
imaelfm (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → (𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵))

Proof of Theorem imaelfm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fimass 6423 . . . 4 (𝐹:𝑌𝑋 → (𝐹𝑆) ⊆ 𝑋)
213ad2ant3 1128 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑆) ⊆ 𝑋)
3 ssid 3910 . . . 4 (𝐹𝑆) ⊆ (𝐹𝑆)
4 imaeq2 5802 . . . . . 6 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
54sseq1d 3919 . . . . 5 (𝑥 = 𝑆 → ((𝐹𝑥) ⊆ (𝐹𝑆) ↔ (𝐹𝑆) ⊆ (𝐹𝑆)))
65rspcev 3559 . . . 4 ((𝑆𝐿 ∧ (𝐹𝑆) ⊆ (𝐹𝑆)) → ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))
73, 6mpan2 687 . . 3 (𝑆𝐿 → ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))
82, 7anim12i 612 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆)))
9 imaelfm.l . . . 4 𝐿 = (𝑌filGen𝐵)
109elfm2 22240 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))))
1110adantr 481 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → ((𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))))
128, 11mpbird 258 1 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → (𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wrex 3106  wss 3859  cima 5446  wf 6221  cfv 6225  (class class class)co 7016  fBascfbas 20215  filGencfg 20216   FilMap cfm 22225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-fbas 20224  df-fg 20225  df-fm 22230
This theorem is referenced by:  rnelfm  22245  fmfnfmlem2  22247  fmfnfmlem4  22249  fmfnfm  22250  fmco  22253  isfcf  22326  cnextcn  22359
  Copyright terms: Public domain W3C validator