Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaelfm | Structured version Visualization version GIF version |
Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
imaelfm.l | ⊢ 𝐿 = (𝑌filGen𝐵) |
Ref | Expression |
---|---|
imaelfm | ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimass 6605 | . . . 4 ⊢ (𝐹:𝑌⟶𝑋 → (𝐹 “ 𝑆) ⊆ 𝑋) | |
2 | 1 | 3ad2ant3 1133 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑆) ⊆ 𝑋) |
3 | ssid 3939 | . . . 4 ⊢ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆) | |
4 | imaeq2 5954 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝐹 “ 𝑥) = (𝐹 “ 𝑆)) | |
5 | 4 | sseq1d 3948 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆) ↔ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆))) |
6 | 5 | rspcev 3552 | . . . 4 ⊢ ((𝑆 ∈ 𝐿 ∧ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆)) → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
7 | 3, 6 | mpan2 687 | . . 3 ⊢ (𝑆 ∈ 𝐿 → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
8 | 2, 7 | anim12i 612 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆))) |
9 | imaelfm.l | . . . 4 ⊢ 𝐿 = (𝑌filGen𝐵) | |
10 | 9 | elfm2 23007 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
11 | 10 | adantr 480 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
12 | 8, 11 | mpbird 256 | 1 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 fBascfbas 20498 filGencfg 20499 FilMap cfm 22992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-fbas 20507 df-fg 20508 df-fm 22997 |
This theorem is referenced by: rnelfm 23012 fmfnfmlem2 23014 fmfnfmlem4 23016 fmfnfm 23017 fmco 23020 isfcf 23093 cnextcn 23126 |
Copyright terms: Public domain | W3C validator |