![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaelfm | Structured version Visualization version GIF version |
Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
imaelfm.l | ⊢ 𝐿 = (𝑌filGen𝐵) |
Ref | Expression |
---|---|
imaelfm | ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimass 6423 | . . . 4 ⊢ (𝐹:𝑌⟶𝑋 → (𝐹 “ 𝑆) ⊆ 𝑋) | |
2 | 1 | 3ad2ant3 1128 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑆) ⊆ 𝑋) |
3 | ssid 3910 | . . . 4 ⊢ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆) | |
4 | imaeq2 5802 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝐹 “ 𝑥) = (𝐹 “ 𝑆)) | |
5 | 4 | sseq1d 3919 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆) ↔ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆))) |
6 | 5 | rspcev 3559 | . . . 4 ⊢ ((𝑆 ∈ 𝐿 ∧ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆)) → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
7 | 3, 6 | mpan2 687 | . . 3 ⊢ (𝑆 ∈ 𝐿 → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
8 | 2, 7 | anim12i 612 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆))) |
9 | imaelfm.l | . . . 4 ⊢ 𝐿 = (𝑌filGen𝐵) | |
10 | 9 | elfm2 22240 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
11 | 10 | adantr 481 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
12 | 8, 11 | mpbird 258 | 1 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ∃wrex 3106 ⊆ wss 3859 “ cima 5446 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 fBascfbas 20215 filGencfg 20216 FilMap cfm 22225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-fbas 20224 df-fg 20225 df-fm 22230 |
This theorem is referenced by: rnelfm 22245 fmfnfmlem2 22247 fmfnfmlem4 22249 fmfnfm 22250 fmco 22253 isfcf 22326 cnextcn 22359 |
Copyright terms: Public domain | W3C validator |