![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaelfm | Structured version Visualization version GIF version |
Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
imaelfm.l | ⊢ 𝐿 = (𝑌filGen𝐵) |
Ref | Expression |
---|---|
imaelfm | ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimass 6738 | . . . 4 ⊢ (𝐹:𝑌⟶𝑋 → (𝐹 “ 𝑆) ⊆ 𝑋) | |
2 | 1 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑆) ⊆ 𝑋) |
3 | ssid 4004 | . . . 4 ⊢ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆) | |
4 | imaeq2 6055 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝐹 “ 𝑥) = (𝐹 “ 𝑆)) | |
5 | 4 | sseq1d 4013 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆) ↔ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆))) |
6 | 5 | rspcev 3612 | . . . 4 ⊢ ((𝑆 ∈ 𝐿 ∧ (𝐹 “ 𝑆) ⊆ (𝐹 “ 𝑆)) → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
7 | 3, 6 | mpan2 688 | . . 3 ⊢ (𝑆 ∈ 𝐿 → ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)) |
8 | 2, 7 | anim12i 612 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆))) |
9 | imaelfm.l | . . . 4 ⊢ 𝐿 = (𝑌filGen𝐵) | |
10 | 9 | elfm2 23673 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
11 | 10 | adantr 480 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → ((𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹 “ 𝑆) ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ (𝐹 “ 𝑆)))) |
12 | 8, 11 | mpbird 257 | 1 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ⊆ wss 3948 “ cima 5679 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 fBascfbas 21133 filGencfg 21134 FilMap cfm 23658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-fbas 21142 df-fg 21143 df-fm 23663 |
This theorem is referenced by: rnelfm 23678 fmfnfmlem2 23680 fmfnfmlem4 23682 fmfnfm 23683 fmco 23686 isfcf 23759 cnextcn 23792 |
Copyright terms: Public domain | W3C validator |