MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fissuni Structured version   Visualization version   GIF version

Theorem fissuni 8855
Description: A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fissuni ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem fissuni
Dummy variables 𝑓 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 489 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3881 . . . . 5 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
3 eluni2 4803 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑧𝐵 𝑥𝑧)
43ralbii 3098 . . . . 5 (∀𝑥𝐴 𝑥 𝐵 ↔ ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
52, 4sylbb 222 . . . 4 (𝐴 𝐵 → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
65adantr 485 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
7 eleq2 2841 . . . 4 (𝑧 = (𝑓𝑥) → (𝑥𝑧𝑥 ∈ (𝑓𝑥)))
87ac6sfi 8788 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑧𝐵 𝑥𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
91, 6, 8syl2anc 588 . 2 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
10 fimass 6541 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
11 vex 3414 . . . . . . . 8 𝑓 ∈ V
1211imaex 7627 . . . . . . 7 (𝑓𝐴) ∈ V
1312elpw 4499 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1410, 13sylibr 237 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1514ad2antrl 728 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ 𝒫 𝐵)
16 ffun 6502 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1716ad2antrl 728 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → Fun 𝑓)
18 simplr 769 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 ∈ Fin)
19 imafi 8843 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2017, 18, 19syl2anc 588 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ Fin)
2115, 20elind 4100 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
22 ffn 6499 . . . . . . . . . . 11 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2322adantr 485 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑓 Fn 𝐴)
24 ssidd 3916 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝐴𝐴)
25 simpr 489 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑥𝐴)
26 fnfvima 6988 . . . . . . . . . 10 ((𝑓 Fn 𝐴𝐴𝐴𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
2723, 24, 25, 26syl3anc 1369 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
28 elssuni 4831 . . . . . . . . 9 ((𝑓𝑥) ∈ (𝑓𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
2927, 28syl 17 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
3029sseld 3892 . . . . . . 7 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑥 ∈ (𝑓𝑥) → 𝑥 (𝑓𝐴)))
3130ralimdva 3109 . . . . . 6 (𝑓:𝐴𝐵 → (∀𝑥𝐴 𝑥 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝑥 (𝑓𝐴)))
3231imp 411 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → ∀𝑥𝐴 𝑥 (𝑓𝐴))
33 dfss3 3881 . . . . 5 (𝐴 (𝑓𝐴) ↔ ∀𝑥𝐴 𝑥 (𝑓𝐴))
3432, 33sylibr 237 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → 𝐴 (𝑓𝐴))
3534adantl 486 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 (𝑓𝐴))
36 unieq 4810 . . . . 5 (𝑐 = (𝑓𝐴) → 𝑐 = (𝑓𝐴))
3736sseq2d 3925 . . . 4 (𝑐 = (𝑓𝐴) → (𝐴 𝑐𝐴 (𝑓𝐴)))
3837rspcev 3542 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 (𝑓𝐴)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
3921, 35, 38syl2anc 588 . 2 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
409, 39exlimddv 1937 1 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wex 1782  wcel 2112  wral 3071  wrex 3072  cin 3858  wss 3859  𝒫 cpw 4495   cuni 4799  cima 5528  Fun wfun 6330   Fn wfn 6331  wf 6332  cfv 6336  Fincfn 8528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-om 7581  df-1o 8113  df-er 8300  df-en 8529  df-dom 8530  df-fin 8532
This theorem is referenced by:  isacs3lem  17835  isnacs3  40017
  Copyright terms: Public domain W3C validator