| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . 3
⊢ ((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) →
𝐴 ∈
Fin) |
| 2 | | dfss3 3972 |
. . . . 5
⊢ (𝐴 ⊆ ∪ 𝐵
↔ ∀𝑥 ∈
𝐴 𝑥 ∈ ∪ 𝐵) |
| 3 | | eluni2 4911 |
. . . . . 6
⊢ (𝑥 ∈ ∪ 𝐵
↔ ∃𝑧 ∈
𝐵 𝑥 ∈ 𝑧) |
| 4 | 3 | ralbii 3093 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝑥 ∈ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 ∈ 𝑧) |
| 5 | 2, 4 | sylbb 219 |
. . . 4
⊢ (𝐴 ⊆ ∪ 𝐵
→ ∀𝑥 ∈
𝐴 ∃𝑧 ∈ 𝐵 𝑥 ∈ 𝑧) |
| 6 | 5 | adantr 480 |
. . 3
⊢ ((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) →
∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 ∈ 𝑧) |
| 7 | | eleq2 2830 |
. . . 4
⊢ (𝑧 = (𝑓‘𝑥) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (𝑓‘𝑥))) |
| 8 | 7 | ac6sfi 9320 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 ∈ 𝑧) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) |
| 9 | 1, 6, 8 | syl2anc 584 |
. 2
⊢ ((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) →
∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) |
| 10 | | fimass 6756 |
. . . . . 6
⊢ (𝑓:𝐴⟶𝐵 → (𝑓 “ 𝐴) ⊆ 𝐵) |
| 11 | | vex 3484 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 12 | 11 | imaex 7936 |
. . . . . . 7
⊢ (𝑓 “ 𝐴) ∈ V |
| 13 | 12 | elpw 4604 |
. . . . . 6
⊢ ((𝑓 “ 𝐴) ∈ 𝒫 𝐵 ↔ (𝑓 “ 𝐴) ⊆ 𝐵) |
| 14 | 10, 13 | sylibr 234 |
. . . . 5
⊢ (𝑓:𝐴⟶𝐵 → (𝑓 “ 𝐴) ∈ 𝒫 𝐵) |
| 15 | 14 | ad2antrl 728 |
. . . 4
⊢ (((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) ∧
(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) → (𝑓 “ 𝐴) ∈ 𝒫 𝐵) |
| 16 | | ffun 6739 |
. . . . . 6
⊢ (𝑓:𝐴⟶𝐵 → Fun 𝑓) |
| 17 | 16 | ad2antrl 728 |
. . . . 5
⊢ (((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) ∧
(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) → Fun 𝑓) |
| 18 | | simplr 769 |
. . . . 5
⊢ (((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) ∧
(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) → 𝐴 ∈ Fin) |
| 19 | | imafi 9353 |
. . . . 5
⊢ ((Fun
𝑓 ∧ 𝐴 ∈ Fin) → (𝑓 “ 𝐴) ∈ Fin) |
| 20 | 17, 18, 19 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) ∧
(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) → (𝑓 “ 𝐴) ∈ Fin) |
| 21 | 15, 20 | elind 4200 |
. . 3
⊢ (((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) ∧
(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) → (𝑓 “ 𝐴) ∈ (𝒫 𝐵 ∩ Fin)) |
| 22 | | ffn 6736 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴⟶𝐵 → 𝑓 Fn 𝐴) |
| 23 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑓 Fn 𝐴) |
| 24 | | ssidd 4007 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝐴) |
| 25 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 26 | | fnfvima 7253 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ (𝑓 “ 𝐴)) |
| 27 | 23, 24, 25, 26 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ (𝑓 “ 𝐴)) |
| 28 | | elssuni 4937 |
. . . . . . . . 9
⊢ ((𝑓‘𝑥) ∈ (𝑓 “ 𝐴) → (𝑓‘𝑥) ⊆ ∪ (𝑓 “ 𝐴)) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ⊆ ∪ (𝑓 “ 𝐴)) |
| 30 | 29 | sseld 3982 |
. . . . . . 7
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ (𝑓‘𝑥) → 𝑥 ∈ ∪ (𝑓 “ 𝐴))) |
| 31 | 30 | ralimdva 3167 |
. . . . . 6
⊢ (𝑓:𝐴⟶𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥) → ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑓 “ 𝐴))) |
| 32 | 31 | imp 406 |
. . . . 5
⊢ ((𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥)) → ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑓 “ 𝐴)) |
| 33 | | dfss3 3972 |
. . . . 5
⊢ (𝐴 ⊆ ∪ (𝑓
“ 𝐴) ↔
∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑓 “ 𝐴)) |
| 34 | 32, 33 | sylibr 234 |
. . . 4
⊢ ((𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥)) → 𝐴 ⊆ ∪ (𝑓 “ 𝐴)) |
| 35 | 34 | adantl 481 |
. . 3
⊢ (((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) ∧
(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) → 𝐴 ⊆ ∪ (𝑓 “ 𝐴)) |
| 36 | | unieq 4918 |
. . . . 5
⊢ (𝑐 = (𝑓 “ 𝐴) → ∪ 𝑐 = ∪
(𝑓 “ 𝐴)) |
| 37 | 36 | sseq2d 4016 |
. . . 4
⊢ (𝑐 = (𝑓 “ 𝐴) → (𝐴 ⊆ ∪ 𝑐 ↔ 𝐴 ⊆ ∪ (𝑓 “ 𝐴))) |
| 38 | 37 | rspcev 3622 |
. . 3
⊢ (((𝑓 “ 𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 ⊆ ∪ (𝑓 “ 𝐴)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 ⊆ ∪ 𝑐) |
| 39 | 21, 35, 38 | syl2anc 584 |
. 2
⊢ (((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) ∧
(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑓‘𝑥))) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 ⊆ ∪ 𝑐) |
| 40 | 9, 39 | exlimddv 1935 |
1
⊢ ((𝐴 ⊆ ∪ 𝐵
∧ 𝐴 ∈ Fin) →
∃𝑐 ∈ (𝒫
𝐵 ∩ Fin)𝐴 ⊆ ∪ 𝑐) |