MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fissuni Structured version   Visualization version   GIF version

Theorem fissuni 9308
Description: A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fissuni ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem fissuni
Dummy variables 𝑓 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3935 . . . . 5 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
3 eluni2 4875 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑧𝐵 𝑥𝑧)
43ralbii 3075 . . . . 5 (∀𝑥𝐴 𝑥 𝐵 ↔ ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
52, 4sylbb 219 . . . 4 (𝐴 𝐵 → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
65adantr 480 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
7 eleq2 2817 . . . 4 (𝑧 = (𝑓𝑥) → (𝑥𝑧𝑥 ∈ (𝑓𝑥)))
87ac6sfi 9231 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑧𝐵 𝑥𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
91, 6, 8syl2anc 584 . 2 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
10 fimass 6708 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
11 vex 3451 . . . . . . . 8 𝑓 ∈ V
1211imaex 7890 . . . . . . 7 (𝑓𝐴) ∈ V
1312elpw 4567 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1410, 13sylibr 234 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1514ad2antrl 728 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ 𝒫 𝐵)
16 ffun 6691 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1716ad2antrl 728 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → Fun 𝑓)
18 simplr 768 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 ∈ Fin)
19 imafi 9264 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2017, 18, 19syl2anc 584 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ Fin)
2115, 20elind 4163 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
22 ffn 6688 . . . . . . . . . . 11 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2322adantr 480 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑓 Fn 𝐴)
24 ssidd 3970 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝐴𝐴)
25 simpr 484 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑥𝐴)
26 fnfvima 7207 . . . . . . . . . 10 ((𝑓 Fn 𝐴𝐴𝐴𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
2723, 24, 25, 26syl3anc 1373 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
28 elssuni 4901 . . . . . . . . 9 ((𝑓𝑥) ∈ (𝑓𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
2927, 28syl 17 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
3029sseld 3945 . . . . . . 7 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑥 ∈ (𝑓𝑥) → 𝑥 (𝑓𝐴)))
3130ralimdva 3145 . . . . . 6 (𝑓:𝐴𝐵 → (∀𝑥𝐴 𝑥 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝑥 (𝑓𝐴)))
3231imp 406 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → ∀𝑥𝐴 𝑥 (𝑓𝐴))
33 dfss3 3935 . . . . 5 (𝐴 (𝑓𝐴) ↔ ∀𝑥𝐴 𝑥 (𝑓𝐴))
3432, 33sylibr 234 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → 𝐴 (𝑓𝐴))
3534adantl 481 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 (𝑓𝐴))
36 unieq 4882 . . . . 5 (𝑐 = (𝑓𝐴) → 𝑐 = (𝑓𝐴))
3736sseq2d 3979 . . . 4 (𝑐 = (𝑓𝐴) → (𝐴 𝑐𝐴 (𝑓𝐴)))
3837rspcev 3588 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 (𝑓𝐴)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
3921, 35, 38syl2anc 584 . 2 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
409, 39exlimddv 1935 1 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-dom 8920  df-fin 8922
This theorem is referenced by:  isacs3lem  18501  isnacs3  42698
  Copyright terms: Public domain W3C validator