MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fissuni Structured version   Visualization version   GIF version

Theorem fissuni 9353
Description: A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fissuni ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem fissuni
Dummy variables 𝑓 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3969 . . . . 5 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
3 eluni2 4911 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑧𝐵 𝑥𝑧)
43ralbii 3093 . . . . 5 (∀𝑥𝐴 𝑥 𝐵 ↔ ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
52, 4sylbb 218 . . . 4 (𝐴 𝐵 → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
65adantr 481 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
7 eleq2 2822 . . . 4 (𝑧 = (𝑓𝑥) → (𝑥𝑧𝑥 ∈ (𝑓𝑥)))
87ac6sfi 9283 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑧𝐵 𝑥𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
91, 6, 8syl2anc 584 . 2 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
10 fimass 6735 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
11 vex 3478 . . . . . . . 8 𝑓 ∈ V
1211imaex 7903 . . . . . . 7 (𝑓𝐴) ∈ V
1312elpw 4605 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1410, 13sylibr 233 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1514ad2antrl 726 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ 𝒫 𝐵)
16 ffun 6717 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1716ad2antrl 726 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → Fun 𝑓)
18 simplr 767 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 ∈ Fin)
19 imafi 9171 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2017, 18, 19syl2anc 584 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ Fin)
2115, 20elind 4193 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
22 ffn 6714 . . . . . . . . . . 11 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2322adantr 481 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑓 Fn 𝐴)
24 ssidd 4004 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝐴𝐴)
25 simpr 485 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑥𝐴)
26 fnfvima 7231 . . . . . . . . . 10 ((𝑓 Fn 𝐴𝐴𝐴𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
2723, 24, 25, 26syl3anc 1371 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
28 elssuni 4940 . . . . . . . . 9 ((𝑓𝑥) ∈ (𝑓𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
2927, 28syl 17 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
3029sseld 3980 . . . . . . 7 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑥 ∈ (𝑓𝑥) → 𝑥 (𝑓𝐴)))
3130ralimdva 3167 . . . . . 6 (𝑓:𝐴𝐵 → (∀𝑥𝐴 𝑥 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝑥 (𝑓𝐴)))
3231imp 407 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → ∀𝑥𝐴 𝑥 (𝑓𝐴))
33 dfss3 3969 . . . . 5 (𝐴 (𝑓𝐴) ↔ ∀𝑥𝐴 𝑥 (𝑓𝐴))
3432, 33sylibr 233 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → 𝐴 (𝑓𝐴))
3534adantl 482 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 (𝑓𝐴))
36 unieq 4918 . . . . 5 (𝑐 = (𝑓𝐴) → 𝑐 = (𝑓𝐴))
3736sseq2d 4013 . . . 4 (𝑐 = (𝑓𝐴) → (𝐴 𝑐𝐴 (𝑓𝐴)))
3837rspcev 3612 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 (𝑓𝐴)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
3921, 35, 38syl2anc 584 . 2 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
409, 39exlimddv 1938 1 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070  cin 3946  wss 3947  𝒫 cpw 4601   cuni 4907  cima 5678  Fun wfun 6534   Fn wfn 6535  wf 6536  cfv 6540  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-en 8936  df-fin 8939
This theorem is referenced by:  isacs3lem  18491  isnacs3  41433
  Copyright terms: Public domain W3C validator