![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1xfrval | Structured version Visualization version GIF version |
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pi1xfr.p | ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) |
pi1xfr.q | ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) |
pi1xfr.b | ⊢ 𝐵 = (Base‘𝑃) |
pi1xfr.g | ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) |
pi1xfr.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1xfr.f | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pi1xfrval.i | ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
pi1xfrval.1 | ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) |
pi1xfrval.2 | ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
pi1xfrval.a | ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) |
Ref | Expression |
---|---|
pi1xfrval | ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1xfrval.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) | |
2 | pi1xfr.g | . . 3 ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) | |
3 | fvex 6927 | . . . 4 ⊢ ( ≃ph‘𝐽) ∈ V | |
4 | ecexg 8757 | . . . 4 ⊢ (( ≃ph‘𝐽) ∈ V → [𝑔]( ≃ph‘𝐽) ∈ V) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [𝑔]( ≃ph‘𝐽) ∈ V) |
6 | ecexg 8757 | . . . 4 ⊢ (( ≃ph‘𝐽) ∈ V → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) ∈ V) | |
7 | 3, 6 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) ∈ V) |
8 | eceq1 8792 | . . 3 ⊢ (𝑔 = 𝐴 → [𝑔]( ≃ph‘𝐽) = [𝐴]( ≃ph‘𝐽)) | |
9 | oveq1 7445 | . . . . 5 ⊢ (𝑔 = 𝐴 → (𝑔(*𝑝‘𝐽)𝐹) = (𝐴(*𝑝‘𝐽)𝐹)) | |
10 | 9 | oveq2d 7454 | . . . 4 ⊢ (𝑔 = 𝐴 → (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) = (𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))) |
11 | 10 | eceq1d 8793 | . . 3 ⊢ (𝑔 = 𝐴 → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
12 | pi1xfr.p | . . . . 5 ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) | |
13 | pi1xfr.q | . . . . 5 ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) | |
14 | pi1xfr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
15 | pi1xfr.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
16 | pi1xfr.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
17 | pi1xfrval.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) | |
18 | pi1xfrval.1 | . . . . 5 ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) | |
19 | pi1xfrval.2 | . . . . 5 ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) | |
20 | 12, 13, 14, 2, 15, 16, 17, 18, 19 | pi1xfrf 25111 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶(Base‘𝑄)) |
21 | 20 | ffund 6748 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
22 | 2, 5, 7, 8, 11, 21 | fliftval 7343 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ∪ 𝐵) → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
23 | 1, 22 | mpdan 687 | 1 ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 〈cop 4640 ∪ cuni 4915 ↦ cmpt 5234 ran crn 5694 ‘cfv 6569 (class class class)co 7438 [cec 8751 0cc0 11162 1c1 11163 Basecbs 17254 TopOnctopon 22941 Cn ccn 23257 IIcii 24926 ≃phcphtpc 25026 *𝑝cpco 25058 π1 cpi1 25061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-ec 8755 df-qs 8759 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-fi 9458 df-sup 9489 df-inf 9490 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-ioo 13397 df-icc 13400 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-hom 17331 df-cco 17332 df-rest 17478 df-topn 17479 df-0g 17497 df-gsum 17498 df-topgen 17499 df-pt 17500 df-prds 17503 df-xrs 17558 df-qtop 17563 df-imas 17564 df-qus 17565 df-xps 17566 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21383 df-xmet 21384 df-met 21385 df-bl 21386 df-mopn 21387 df-cnfld 21392 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-cld 23052 df-cn 23260 df-cnp 23261 df-tx 23595 df-hmeo 23788 df-xms 24355 df-ms 24356 df-tms 24357 df-ii 24928 df-htpy 25027 df-phtpy 25028 df-phtpc 25049 df-pco 25063 df-om1 25064 df-pi1 25066 |
This theorem is referenced by: pi1xfr 25113 |
Copyright terms: Public domain | W3C validator |