![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1xfrval | Structured version Visualization version GIF version |
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pi1xfr.p | β’ π = (π½ Ο1 (πΉβ0)) |
pi1xfr.q | β’ π = (π½ Ο1 (πΉβ1)) |
pi1xfr.b | β’ π΅ = (Baseβπ) |
pi1xfr.g | β’ πΊ = ran (π β βͺ π΅ β¦ β¨[π]( βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½)β©) |
pi1xfr.j | β’ (π β π½ β (TopOnβπ)) |
pi1xfr.f | β’ (π β πΉ β (II Cn π½)) |
pi1xfrval.i | β’ (π β πΌ β (II Cn π½)) |
pi1xfrval.1 | β’ (π β (πΉβ1) = (πΌβ0)) |
pi1xfrval.2 | β’ (π β (πΌβ1) = (πΉβ0)) |
pi1xfrval.a | β’ (π β π΄ β βͺ π΅) |
Ref | Expression |
---|---|
pi1xfrval | β’ (π β (πΊβ[π΄]( βphβπ½)) = [(πΌ(*πβπ½)(π΄(*πβπ½)πΉ))]( βphβπ½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1xfrval.a | . 2 β’ (π β π΄ β βͺ π΅) | |
2 | pi1xfr.g | . . 3 β’ πΊ = ran (π β βͺ π΅ β¦ β¨[π]( βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½)β©) | |
3 | fvex 6905 | . . . 4 β’ ( βphβπ½) β V | |
4 | ecexg 8707 | . . . 4 β’ (( βphβπ½) β V β [π]( βphβπ½) β V) | |
5 | 3, 4 | mp1i 13 | . . 3 β’ ((π β§ π β βͺ π΅) β [π]( βphβπ½) β V) |
6 | ecexg 8707 | . . . 4 β’ (( βphβπ½) β V β [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½) β V) | |
7 | 3, 6 | mp1i 13 | . . 3 β’ ((π β§ π β βͺ π΅) β [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½) β V) |
8 | eceq1 8741 | . . 3 β’ (π = π΄ β [π]( βphβπ½) = [π΄]( βphβπ½)) | |
9 | oveq1 7416 | . . . . 5 β’ (π = π΄ β (π(*πβπ½)πΉ) = (π΄(*πβπ½)πΉ)) | |
10 | 9 | oveq2d 7425 | . . . 4 β’ (π = π΄ β (πΌ(*πβπ½)(π(*πβπ½)πΉ)) = (πΌ(*πβπ½)(π΄(*πβπ½)πΉ))) |
11 | 10 | eceq1d 8742 | . . 3 β’ (π = π΄ β [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½) = [(πΌ(*πβπ½)(π΄(*πβπ½)πΉ))]( βphβπ½)) |
12 | pi1xfr.p | . . . . 5 β’ π = (π½ Ο1 (πΉβ0)) | |
13 | pi1xfr.q | . . . . 5 β’ π = (π½ Ο1 (πΉβ1)) | |
14 | pi1xfr.b | . . . . 5 β’ π΅ = (Baseβπ) | |
15 | pi1xfr.j | . . . . 5 β’ (π β π½ β (TopOnβπ)) | |
16 | pi1xfr.f | . . . . 5 β’ (π β πΉ β (II Cn π½)) | |
17 | pi1xfrval.i | . . . . 5 β’ (π β πΌ β (II Cn π½)) | |
18 | pi1xfrval.1 | . . . . 5 β’ (π β (πΉβ1) = (πΌβ0)) | |
19 | pi1xfrval.2 | . . . . 5 β’ (π β (πΌβ1) = (πΉβ0)) | |
20 | 12, 13, 14, 2, 15, 16, 17, 18, 19 | pi1xfrf 24569 | . . . 4 β’ (π β πΊ:π΅βΆ(Baseβπ)) |
21 | 20 | ffund 6722 | . . 3 β’ (π β Fun πΊ) |
22 | 2, 5, 7, 8, 11, 21 | fliftval 7313 | . 2 β’ ((π β§ π΄ β βͺ π΅) β (πΊβ[π΄]( βphβπ½)) = [(πΌ(*πβπ½)(π΄(*πβπ½)πΉ))]( βphβπ½)) |
23 | 1, 22 | mpdan 686 | 1 β’ (π β (πΊβ[π΄]( βphβπ½)) = [(πΌ(*πβπ½)(π΄(*πβπ½)πΉ))]( βphβπ½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 β¨cop 4635 βͺ cuni 4909 β¦ cmpt 5232 ran crn 5678 βcfv 6544 (class class class)co 7409 [cec 8701 0cc0 11110 1c1 11111 Basecbs 17144 TopOnctopon 22412 Cn ccn 22728 IIcii 24391 βphcphtpc 24485 *πcpco 24516 Ο1 cpi1 24519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-ec 8705 df-qs 8709 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-icc 13331 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-qus 17455 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-cn 22731 df-cnp 22732 df-tx 23066 df-hmeo 23259 df-xms 23826 df-ms 23827 df-tms 23828 df-ii 24393 df-htpy 24486 df-phtpy 24487 df-phtpc 24508 df-pco 24521 df-om1 24522 df-pi1 24524 |
This theorem is referenced by: pi1xfr 24571 |
Copyright terms: Public domain | W3C validator |