MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrval Structured version   Visualization version   GIF version

Theorem pi1xfrval 24981
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfrval.i (𝜑𝐼 ∈ (II Cn 𝐽))
pi1xfrval.1 (𝜑 → (𝐹‘1) = (𝐼‘0))
pi1xfrval.2 (𝜑 → (𝐼‘1) = (𝐹‘0))
pi1xfrval.a (𝜑𝐴 𝐵)
Assertion
Ref Expression
pi1xfrval (𝜑 → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝐼   𝐴,𝑔   𝜑,𝑔   𝑔,𝐽   𝑃,𝑔   𝑄,𝑔
Allowed substitution hints:   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1xfrval
StepHypRef Expression
1 pi1xfrval.a . 2 (𝜑𝐴 𝐵)
2 pi1xfr.g . . 3 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
3 fvex 6835 . . . 4 ( ≃ph𝐽) ∈ V
4 ecexg 8626 . . . 4 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
53, 4mp1i 13 . . 3 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
6 ecexg 8626 . . . 4 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
73, 6mp1i 13 . . 3 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
8 eceq1 8661 . . 3 (𝑔 = 𝐴 → [𝑔]( ≃ph𝐽) = [𝐴]( ≃ph𝐽))
9 oveq1 7353 . . . . 5 (𝑔 = 𝐴 → (𝑔(*𝑝𝐽)𝐹) = (𝐴(*𝑝𝐽)𝐹))
109oveq2d 7362 . . . 4 (𝑔 = 𝐴 → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹)))
1110eceq1d 8662 . . 3 (𝑔 = 𝐴 → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
12 pi1xfr.p . . . . 5 𝑃 = (𝐽 π1 (𝐹‘0))
13 pi1xfr.q . . . . 5 𝑄 = (𝐽 π1 (𝐹‘1))
14 pi1xfr.b . . . . 5 𝐵 = (Base‘𝑃)
15 pi1xfr.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 pi1xfr.f . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
17 pi1xfrval.i . . . . 5 (𝜑𝐼 ∈ (II Cn 𝐽))
18 pi1xfrval.1 . . . . 5 (𝜑 → (𝐹‘1) = (𝐼‘0))
19 pi1xfrval.2 . . . . 5 (𝜑 → (𝐼‘1) = (𝐹‘0))
2012, 13, 14, 2, 15, 16, 17, 18, 19pi1xfrf 24980 . . . 4 (𝜑𝐺:𝐵⟶(Base‘𝑄))
2120ffund 6655 . . 3 (𝜑 → Fun 𝐺)
222, 5, 7, 8, 11, 21fliftval 7250 . 2 ((𝜑𝐴 𝐵) → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
231, 22mpdan 687 1 (𝜑 → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579   cuni 4856  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  [cec 8620  0cc0 11006  1c1 11007  Basecbs 17120  TopOnctopon 22825   Cn ccn 23139  IIcii 24795  phcphtpc 24895  *𝑝cpco 24927   π1 cpi1 24930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-qus 17413  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-cn 23142  df-cnp 23143  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-ii 24797  df-htpy 24896  df-phtpy 24897  df-phtpc 24918  df-pco 24932  df-om1 24933  df-pi1 24935
This theorem is referenced by:  pi1xfr  24982
  Copyright terms: Public domain W3C validator