| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1xfrval | Structured version Visualization version GIF version | ||
| Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| pi1xfr.p | ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) |
| pi1xfr.q | ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) |
| pi1xfr.b | ⊢ 𝐵 = (Base‘𝑃) |
| pi1xfr.g | ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) |
| pi1xfr.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1xfr.f | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pi1xfrval.i | ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
| pi1xfrval.1 | ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) |
| pi1xfrval.2 | ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
| pi1xfrval.a | ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) |
| Ref | Expression |
|---|---|
| pi1xfrval | ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1xfrval.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) | |
| 2 | pi1xfr.g | . . 3 ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) | |
| 3 | fvex 6899 | . . . 4 ⊢ ( ≃ph‘𝐽) ∈ V | |
| 4 | ecexg 8731 | . . . 4 ⊢ (( ≃ph‘𝐽) ∈ V → [𝑔]( ≃ph‘𝐽) ∈ V) | |
| 5 | 3, 4 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [𝑔]( ≃ph‘𝐽) ∈ V) |
| 6 | ecexg 8731 | . . . 4 ⊢ (( ≃ph‘𝐽) ∈ V → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) ∈ V) | |
| 7 | 3, 6 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) ∈ V) |
| 8 | eceq1 8766 | . . 3 ⊢ (𝑔 = 𝐴 → [𝑔]( ≃ph‘𝐽) = [𝐴]( ≃ph‘𝐽)) | |
| 9 | oveq1 7420 | . . . . 5 ⊢ (𝑔 = 𝐴 → (𝑔(*𝑝‘𝐽)𝐹) = (𝐴(*𝑝‘𝐽)𝐹)) | |
| 10 | 9 | oveq2d 7429 | . . . 4 ⊢ (𝑔 = 𝐴 → (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) = (𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))) |
| 11 | 10 | eceq1d 8767 | . . 3 ⊢ (𝑔 = 𝐴 → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
| 12 | pi1xfr.p | . . . . 5 ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) | |
| 13 | pi1xfr.q | . . . . 5 ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) | |
| 14 | pi1xfr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 15 | pi1xfr.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 16 | pi1xfr.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 17 | pi1xfrval.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) | |
| 18 | pi1xfrval.1 | . . . . 5 ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) | |
| 19 | pi1xfrval.2 | . . . . 5 ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) | |
| 20 | 12, 13, 14, 2, 15, 16, 17, 18, 19 | pi1xfrf 25022 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶(Base‘𝑄)) |
| 21 | 20 | ffund 6720 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
| 22 | 2, 5, 7, 8, 11, 21 | fliftval 7318 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ∪ 𝐵) → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
| 23 | 1, 22 | mpdan 687 | 1 ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 〈cop 4612 ∪ cuni 4887 ↦ cmpt 5205 ran crn 5666 ‘cfv 6541 (class class class)co 7413 [cec 8725 0cc0 11137 1c1 11138 Basecbs 17229 TopOnctopon 22864 Cn ccn 23178 IIcii 24837 ≃phcphtpc 24937 *𝑝cpco 24969 π1 cpi1 24972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-ec 8729 df-qs 8733 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-icc 13376 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-rest 17438 df-topn 17439 df-0g 17457 df-gsum 17458 df-topgen 17459 df-pt 17460 df-prds 17463 df-xrs 17518 df-qtop 17523 df-imas 17524 df-qus 17525 df-xps 17526 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-mulg 19055 df-cntz 19304 df-cmn 19768 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-cnfld 21327 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-cld 22973 df-cn 23181 df-cnp 23182 df-tx 23516 df-hmeo 23709 df-xms 24275 df-ms 24276 df-tms 24277 df-ii 24839 df-htpy 24938 df-phtpy 24939 df-phtpc 24960 df-pco 24974 df-om1 24975 df-pi1 24977 |
| This theorem is referenced by: pi1xfr 25024 |
| Copyright terms: Public domain | W3C validator |