Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrval Structured version   Visualization version   GIF version

Theorem pi1xfrval 23657
 Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfrval.i (𝜑𝐼 ∈ (II Cn 𝐽))
pi1xfrval.1 (𝜑 → (𝐹‘1) = (𝐼‘0))
pi1xfrval.2 (𝜑 → (𝐼‘1) = (𝐹‘0))
pi1xfrval.a (𝜑𝐴 𝐵)
Assertion
Ref Expression
pi1xfrval (𝜑 → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝐼   𝐴,𝑔   𝜑,𝑔   𝑔,𝐽   𝑃,𝑔   𝑄,𝑔
Allowed substitution hints:   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1xfrval
StepHypRef Expression
1 pi1xfrval.a . 2 (𝜑𝐴 𝐵)
2 pi1xfr.g . . 3 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
3 fvex 6682 . . . 4 ( ≃ph𝐽) ∈ V
4 ecexg 8292 . . . 4 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
53, 4mp1i 13 . . 3 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
6 ecexg 8292 . . . 4 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
73, 6mp1i 13 . . 3 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
8 eceq1 8326 . . 3 (𝑔 = 𝐴 → [𝑔]( ≃ph𝐽) = [𝐴]( ≃ph𝐽))
9 oveq1 7162 . . . . 5 (𝑔 = 𝐴 → (𝑔(*𝑝𝐽)𝐹) = (𝐴(*𝑝𝐽)𝐹))
109oveq2d 7171 . . . 4 (𝑔 = 𝐴 → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹)))
1110eceq1d 8327 . . 3 (𝑔 = 𝐴 → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
12 pi1xfr.p . . . . 5 𝑃 = (𝐽 π1 (𝐹‘0))
13 pi1xfr.q . . . . 5 𝑄 = (𝐽 π1 (𝐹‘1))
14 pi1xfr.b . . . . 5 𝐵 = (Base‘𝑃)
15 pi1xfr.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 pi1xfr.f . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
17 pi1xfrval.i . . . . 5 (𝜑𝐼 ∈ (II Cn 𝐽))
18 pi1xfrval.1 . . . . 5 (𝜑 → (𝐹‘1) = (𝐼‘0))
19 pi1xfrval.2 . . . . 5 (𝜑 → (𝐼‘1) = (𝐹‘0))
2012, 13, 14, 2, 15, 16, 17, 18, 19pi1xfrf 23656 . . . 4 (𝜑𝐺:𝐵⟶(Base‘𝑄))
2120ffund 6517 . . 3 (𝜑 → Fun 𝐺)
222, 5, 7, 8, 11, 21fliftval 7068 . 2 ((𝜑𝐴 𝐵) → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
231, 22mpdan 685 1 (𝜑 → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1533   ∈ wcel 2110  Vcvv 3494  ⟨cop 4572  ∪ cuni 4837   ↦ cmpt 5145  ran crn 5555  ‘cfv 6354  (class class class)co 7155  [cec 8286  0cc0 10536  1c1 10537  Basecbs 16482  TopOnctopon 21517   Cn ccn 21831  IIcii 23482   ≃phcphtpc 23572  *𝑝cpco 23603   π1 cpi1 23606 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-mulf 10616 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-qus 16781  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-cn 21834  df-cnp 21835  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-ii 23484  df-htpy 23573  df-phtpy 23574  df-phtpc 23595  df-pco 23608  df-om1 23609  df-pi1 23611 This theorem is referenced by:  pi1xfr  23658
 Copyright terms: Public domain W3C validator