MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrval Structured version   Visualization version   GIF version

Theorem pi1xfrval 25108
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfrval.i (𝜑𝐼 ∈ (II Cn 𝐽))
pi1xfrval.1 (𝜑 → (𝐹‘1) = (𝐼‘0))
pi1xfrval.2 (𝜑 → (𝐼‘1) = (𝐹‘0))
pi1xfrval.a (𝜑𝐴 𝐵)
Assertion
Ref Expression
pi1xfrval (𝜑 → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝐼   𝐴,𝑔   𝜑,𝑔   𝑔,𝐽   𝑃,𝑔   𝑄,𝑔
Allowed substitution hints:   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1xfrval
StepHypRef Expression
1 pi1xfrval.a . 2 (𝜑𝐴 𝐵)
2 pi1xfr.g . . 3 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
3 fvex 6935 . . . 4 ( ≃ph𝐽) ∈ V
4 ecexg 8769 . . . 4 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
53, 4mp1i 13 . . 3 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ V)
6 ecexg 8769 . . . 4 (( ≃ph𝐽) ∈ V → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
73, 6mp1i 13 . . 3 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ V)
8 eceq1 8804 . . 3 (𝑔 = 𝐴 → [𝑔]( ≃ph𝐽) = [𝐴]( ≃ph𝐽))
9 oveq1 7457 . . . . 5 (𝑔 = 𝐴 → (𝑔(*𝑝𝐽)𝐹) = (𝐴(*𝑝𝐽)𝐹))
109oveq2d 7466 . . . 4 (𝑔 = 𝐴 → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹)))
1110eceq1d 8805 . . 3 (𝑔 = 𝐴 → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
12 pi1xfr.p . . . . 5 𝑃 = (𝐽 π1 (𝐹‘0))
13 pi1xfr.q . . . . 5 𝑄 = (𝐽 π1 (𝐹‘1))
14 pi1xfr.b . . . . 5 𝐵 = (Base‘𝑃)
15 pi1xfr.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 pi1xfr.f . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
17 pi1xfrval.i . . . . 5 (𝜑𝐼 ∈ (II Cn 𝐽))
18 pi1xfrval.1 . . . . 5 (𝜑 → (𝐹‘1) = (𝐼‘0))
19 pi1xfrval.2 . . . . 5 (𝜑 → (𝐼‘1) = (𝐹‘0))
2012, 13, 14, 2, 15, 16, 17, 18, 19pi1xfrf 25107 . . . 4 (𝜑𝐺:𝐵⟶(Base‘𝑄))
2120ffund 6753 . . 3 (𝜑 → Fun 𝐺)
222, 5, 7, 8, 11, 21fliftval 7354 . 2 ((𝜑𝐴 𝐵) → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
231, 22mpdan 686 1 (𝜑 → (𝐺‘[𝐴]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝐴(*𝑝𝐽)𝐹))]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654   cuni 4931  cmpt 5249  ran crn 5701  cfv 6575  (class class class)co 7450  [cec 8763  0cc0 11186  1c1 11187  Basecbs 17260  TopOnctopon 22939   Cn ccn 23255  IIcii 24922  phcphtpc 25022  *𝑝cpco 25054   π1 cpi1 25057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-supp 8204  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-ec 8767  df-qs 8771  df-map 8888  df-ixp 8958  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-fsupp 9434  df-fi 9482  df-sup 9513  df-inf 9514  df-oi 9581  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-q 13016  df-rp 13060  df-xneg 13177  df-xadd 13178  df-xmul 13179  df-ioo 13413  df-icc 13416  df-fz 13570  df-fzo 13714  df-seq 14055  df-exp 14115  df-hash 14382  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-starv 17328  df-sca 17329  df-vsca 17330  df-ip 17331  df-tset 17332  df-ple 17333  df-ds 17335  df-unif 17336  df-hom 17337  df-cco 17338  df-rest 17484  df-topn 17485  df-0g 17503  df-gsum 17504  df-topgen 17505  df-pt 17506  df-prds 17509  df-xrs 17564  df-qtop 17569  df-imas 17570  df-qus 17571  df-xps 17572  df-mre 17646  df-mrc 17647  df-acs 17649  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-submnd 18821  df-mulg 19110  df-cntz 19359  df-cmn 19826  df-psmet 21381  df-xmet 21382  df-met 21383  df-bl 21384  df-mopn 21385  df-cnfld 21390  df-top 22923  df-topon 22940  df-topsp 22962  df-bases 22976  df-cld 23050  df-cn 23258  df-cnp 23259  df-tx 23593  df-hmeo 23786  df-xms 24353  df-ms 24354  df-tms 24355  df-ii 24924  df-htpy 25023  df-phtpy 25024  df-phtpc 25045  df-pco 25059  df-om1 25060  df-pi1 25062
This theorem is referenced by:  pi1xfr  25109
  Copyright terms: Public domain W3C validator