Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1coval | Structured version Visualization version GIF version |
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pi1co.p | ⊢ 𝑃 = (𝐽 π1 𝐴) |
pi1co.q | ⊢ 𝑄 = (𝐾 π1 𝐵) |
pi1co.v | ⊢ 𝑉 = (Base‘𝑃) |
pi1co.g | ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) |
pi1co.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1co.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
pi1co.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
pi1co.b | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) |
Ref | Expression |
---|---|
pi1coval | ⊢ ((𝜑 ∧ 𝑇 ∈ ∪ 𝑉) → (𝐺‘[𝑇]( ≃ph‘𝐽)) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1co.g | . 2 ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) | |
2 | fvex 6805 | . . 3 ⊢ ( ≃ph‘𝐽) ∈ V | |
3 | ecexg 8522 | . . 3 ⊢ (( ≃ph‘𝐽) ∈ V → [𝑔]( ≃ph‘𝐽) ∈ V) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → [𝑔]( ≃ph‘𝐽) ∈ V) |
5 | fvex 6805 | . . 3 ⊢ ( ≃ph‘𝐾) ∈ V | |
6 | ecexg 8522 | . . 3 ⊢ (( ≃ph‘𝐾) ∈ V → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) ∈ V) | |
7 | 5, 6 | mp1i 13 | . 2 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) ∈ V) |
8 | eceq1 8556 | . 2 ⊢ (𝑔 = 𝑇 → [𝑔]( ≃ph‘𝐽) = [𝑇]( ≃ph‘𝐽)) | |
9 | coeq2 5771 | . . 3 ⊢ (𝑔 = 𝑇 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝑇)) | |
10 | 9 | eceq1d 8557 | . 2 ⊢ (𝑔 = 𝑇 → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) |
11 | pi1co.p | . . . 4 ⊢ 𝑃 = (𝐽 π1 𝐴) | |
12 | pi1co.q | . . . 4 ⊢ 𝑄 = (𝐾 π1 𝐵) | |
13 | pi1co.v | . . . 4 ⊢ 𝑉 = (Base‘𝑃) | |
14 | pi1co.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
15 | pi1co.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
16 | pi1co.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
17 | pi1co.b | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) | |
18 | 11, 12, 13, 1, 14, 15, 16, 17 | pi1cof 24250 | . . 3 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑄)) |
19 | 18 | ffund 6622 | . 2 ⊢ (𝜑 → Fun 𝐺) |
20 | 1, 4, 7, 8, 10, 19 | fliftval 7207 | 1 ⊢ ((𝜑 ∧ 𝑇 ∈ ∪ 𝑉) → (𝐺‘[𝑇]( ≃ph‘𝐽)) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 Vcvv 3434 〈cop 4570 ∪ cuni 4841 ↦ cmpt 5160 ran crn 5592 ∘ ccom 5595 ‘cfv 6447 (class class class)co 7295 [cec 8516 Basecbs 16940 TopOnctopon 22087 Cn ccn 22403 ≃phcphtpc 24160 π1 cpi1 24194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 ax-mulf 10979 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-2o 8318 df-er 8518 df-ec 8520 df-qs 8524 df-map 8637 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-fi 9198 df-sup 9229 df-inf 9230 df-oi 9297 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-q 12717 df-rp 12759 df-xneg 12876 df-xadd 12877 df-xmul 12878 df-ioo 13111 df-icc 13114 df-fz 13268 df-fzo 13411 df-seq 13750 df-exp 13811 df-hash 14073 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-hom 17014 df-cco 17015 df-rest 17161 df-topn 17162 df-0g 17180 df-gsum 17181 df-topgen 17182 df-pt 17183 df-prds 17186 df-xrs 17241 df-qtop 17246 df-imas 17247 df-qus 17248 df-xps 17249 df-mre 17323 df-mrc 17324 df-acs 17326 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-submnd 18459 df-mulg 18729 df-cntz 18951 df-cmn 19416 df-psmet 20617 df-xmet 20618 df-met 20619 df-bl 20620 df-mopn 20621 df-cnfld 20626 df-top 22071 df-topon 22088 df-topsp 22110 df-bases 22124 df-cld 22198 df-cn 22406 df-cnp 22407 df-tx 22741 df-hmeo 22934 df-xms 23501 df-ms 23502 df-tms 23503 df-ii 24068 df-htpy 24161 df-phtpy 24162 df-phtpc 24183 df-om1 24197 df-pi1 24199 |
This theorem is referenced by: pi1coghm 24252 |
Copyright terms: Public domain | W3C validator |