MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coval Structured version   Visualization version   GIF version

Theorem pi1coval 24966
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p 𝑃 = (𝐽 π1 𝐴)
pi1co.q 𝑄 = (𝐾 π1 𝐵)
pi1co.v 𝑉 = (Base‘𝑃)
pi1co.g 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
pi1co.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1co.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
pi1co.a (𝜑𝐴𝑋)
pi1co.b (𝜑 → (𝐹𝐴) = 𝐵)
Assertion
Ref Expression
pi1coval ((𝜑𝑇 𝑉) → (𝐺‘[𝑇]( ≃ph𝐽)) = [(𝐹𝑇)]( ≃ph𝐾))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝜑,𝑔   𝑔,𝐾   𝑃,𝑔   𝑇,𝑔   𝑄,𝑔   𝑔,𝑉
Allowed substitution hints:   𝐵(𝑔)   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1coval
StepHypRef Expression
1 pi1co.g . 2 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
2 fvex 6873 . . 3 ( ≃ph𝐽) ∈ V
3 ecexg 8677 . . 3 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . 2 ((𝜑𝑔 𝑉) → [𝑔]( ≃ph𝐽) ∈ V)
5 fvex 6873 . . 3 ( ≃ph𝐾) ∈ V
6 ecexg 8677 . . 3 (( ≃ph𝐾) ∈ V → [(𝐹𝑔)]( ≃ph𝐾) ∈ V)
75, 6mp1i 13 . 2 ((𝜑𝑔 𝑉) → [(𝐹𝑔)]( ≃ph𝐾) ∈ V)
8 eceq1 8712 . 2 (𝑔 = 𝑇 → [𝑔]( ≃ph𝐽) = [𝑇]( ≃ph𝐽))
9 coeq2 5824 . . 3 (𝑔 = 𝑇 → (𝐹𝑔) = (𝐹𝑇))
109eceq1d 8713 . 2 (𝑔 = 𝑇 → [(𝐹𝑔)]( ≃ph𝐾) = [(𝐹𝑇)]( ≃ph𝐾))
11 pi1co.p . . . 4 𝑃 = (𝐽 π1 𝐴)
12 pi1co.q . . . 4 𝑄 = (𝐾 π1 𝐵)
13 pi1co.v . . . 4 𝑉 = (Base‘𝑃)
14 pi1co.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 pi1co.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
16 pi1co.a . . . 4 (𝜑𝐴𝑋)
17 pi1co.b . . . 4 (𝜑 → (𝐹𝐴) = 𝐵)
1811, 12, 13, 1, 14, 15, 16, 17pi1cof 24965 . . 3 (𝜑𝐺:𝑉⟶(Base‘𝑄))
1918ffund 6694 . 2 (𝜑 → Fun 𝐺)
201, 4, 7, 8, 10, 19fliftval 7293 1 ((𝜑𝑇 𝑉) → (𝐺‘[𝑇]( ≃ph𝐽)) = [(𝐹𝑇)]( ≃ph𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4597   cuni 4873  cmpt 5190  ran crn 5641  ccom 5644  cfv 6513  (class class class)co 7389  [cec 8671  Basecbs 17185  TopOnctopon 22803   Cn ccn 23117  phcphtpc 24874   π1 cpi1 24909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-icc 13319  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-qus 17478  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-cn 23120  df-cnp 23121  df-tx 23455  df-hmeo 23648  df-xms 24214  df-ms 24215  df-tms 24216  df-ii 24776  df-htpy 24875  df-phtpy 24876  df-phtpc 24897  df-om1 24912  df-pi1 24914
This theorem is referenced by:  pi1coghm  24967
  Copyright terms: Public domain W3C validator