Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1coval | Structured version Visualization version GIF version |
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pi1co.p | ⊢ 𝑃 = (𝐽 π1 𝐴) |
pi1co.q | ⊢ 𝑄 = (𝐾 π1 𝐵) |
pi1co.v | ⊢ 𝑉 = (Base‘𝑃) |
pi1co.g | ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) |
pi1co.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1co.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
pi1co.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
pi1co.b | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) |
Ref | Expression |
---|---|
pi1coval | ⊢ ((𝜑 ∧ 𝑇 ∈ ∪ 𝑉) → (𝐺‘[𝑇]( ≃ph‘𝐽)) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1co.g | . 2 ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) | |
2 | fvex 6838 | . . 3 ⊢ ( ≃ph‘𝐽) ∈ V | |
3 | ecexg 8573 | . . 3 ⊢ (( ≃ph‘𝐽) ∈ V → [𝑔]( ≃ph‘𝐽) ∈ V) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → [𝑔]( ≃ph‘𝐽) ∈ V) |
5 | fvex 6838 | . . 3 ⊢ ( ≃ph‘𝐾) ∈ V | |
6 | ecexg 8573 | . . 3 ⊢ (( ≃ph‘𝐾) ∈ V → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) ∈ V) | |
7 | 5, 6 | mp1i 13 | . 2 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) ∈ V) |
8 | eceq1 8607 | . 2 ⊢ (𝑔 = 𝑇 → [𝑔]( ≃ph‘𝐽) = [𝑇]( ≃ph‘𝐽)) | |
9 | coeq2 5800 | . . 3 ⊢ (𝑔 = 𝑇 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝑇)) | |
10 | 9 | eceq1d 8608 | . 2 ⊢ (𝑔 = 𝑇 → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) |
11 | pi1co.p | . . . 4 ⊢ 𝑃 = (𝐽 π1 𝐴) | |
12 | pi1co.q | . . . 4 ⊢ 𝑄 = (𝐾 π1 𝐵) | |
13 | pi1co.v | . . . 4 ⊢ 𝑉 = (Base‘𝑃) | |
14 | pi1co.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
15 | pi1co.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
16 | pi1co.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
17 | pi1co.b | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) | |
18 | 11, 12, 13, 1, 14, 15, 16, 17 | pi1cof 24328 | . . 3 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑄)) |
19 | 18 | ffund 6655 | . 2 ⊢ (𝜑 → Fun 𝐺) |
20 | 1, 4, 7, 8, 10, 19 | fliftval 7243 | 1 ⊢ ((𝜑 ∧ 𝑇 ∈ ∪ 𝑉) → (𝐺‘[𝑇]( ≃ph‘𝐽)) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 〈cop 4579 ∪ cuni 4852 ↦ cmpt 5175 ran crn 5621 ∘ ccom 5624 ‘cfv 6479 (class class class)co 7337 [cec 8567 Basecbs 17009 TopOnctopon 22165 Cn ccn 22481 ≃phcphtpc 24238 π1 cpi1 24272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-mulf 11052 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-er 8569 df-ec 8571 df-qs 8575 df-map 8688 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ioo 13184 df-icc 13187 df-fz 13341 df-fzo 13484 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-qus 17317 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-cnfld 20704 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-cn 22484 df-cnp 22485 df-tx 22819 df-hmeo 23012 df-xms 23579 df-ms 23580 df-tms 23581 df-ii 24146 df-htpy 24239 df-phtpy 24240 df-phtpc 24261 df-om1 24275 df-pi1 24277 |
This theorem is referenced by: pi1coghm 24330 |
Copyright terms: Public domain | W3C validator |