MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coval Structured version   Visualization version   GIF version

Theorem pi1coval 23229
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p 𝑃 = (𝐽 π1 𝐴)
pi1co.q 𝑄 = (𝐾 π1 𝐵)
pi1co.v 𝑉 = (Base‘𝑃)
pi1co.g 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
pi1co.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1co.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
pi1co.a (𝜑𝐴𝑋)
pi1co.b (𝜑 → (𝐹𝐴) = 𝐵)
Assertion
Ref Expression
pi1coval ((𝜑𝑇 𝑉) → (𝐺‘[𝑇]( ≃ph𝐽)) = [(𝐹𝑇)]( ≃ph𝐾))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝜑,𝑔   𝑔,𝐾   𝑃,𝑔   𝑇,𝑔   𝑄,𝑔   𝑔,𝑉
Allowed substitution hints:   𝐵(𝑔)   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1coval
StepHypRef Expression
1 pi1co.g . 2 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
2 fvex 6446 . . 3 ( ≃ph𝐽) ∈ V
3 ecexg 8013 . . 3 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . 2 ((𝜑𝑔 𝑉) → [𝑔]( ≃ph𝐽) ∈ V)
5 fvex 6446 . . 3 ( ≃ph𝐾) ∈ V
6 ecexg 8013 . . 3 (( ≃ph𝐾) ∈ V → [(𝐹𝑔)]( ≃ph𝐾) ∈ V)
75, 6mp1i 13 . 2 ((𝜑𝑔 𝑉) → [(𝐹𝑔)]( ≃ph𝐾) ∈ V)
8 eceq1 8047 . 2 (𝑔 = 𝑇 → [𝑔]( ≃ph𝐽) = [𝑇]( ≃ph𝐽))
9 coeq2 5513 . . 3 (𝑔 = 𝑇 → (𝐹𝑔) = (𝐹𝑇))
109eceq1d 8048 . 2 (𝑔 = 𝑇 → [(𝐹𝑔)]( ≃ph𝐾) = [(𝐹𝑇)]( ≃ph𝐾))
11 pi1co.p . . . 4 𝑃 = (𝐽 π1 𝐴)
12 pi1co.q . . . 4 𝑄 = (𝐾 π1 𝐵)
13 pi1co.v . . . 4 𝑉 = (Base‘𝑃)
14 pi1co.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 pi1co.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
16 pi1co.a . . . 4 (𝜑𝐴𝑋)
17 pi1co.b . . . 4 (𝜑 → (𝐹𝐴) = 𝐵)
1811, 12, 13, 1, 14, 15, 16, 17pi1cof 23228 . . 3 (𝜑𝐺:𝑉⟶(Base‘𝑄))
1918ffund 6282 . 2 (𝜑 → Fun 𝐺)
201, 4, 7, 8, 10, 19fliftval 6821 1 ((𝜑𝑇 𝑉) → (𝐺‘[𝑇]( ≃ph𝐽)) = [(𝐹𝑇)]( ≃ph𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  Vcvv 3414  cop 4403   cuni 4658  cmpt 4952  ran crn 5343  ccom 5346  cfv 6123  (class class class)co 6905  [cec 8007  Basecbs 16222  TopOnctopon 21085   Cn ccn 21399  phcphtpc 23138   π1 cpi1 23172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-ec 8011  df-qs 8015  df-map 8124  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-qus 16522  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-cn 21402  df-cnp 21403  df-tx 21736  df-hmeo 21929  df-xms 22495  df-ms 22496  df-tms 22497  df-ii 23050  df-htpy 23139  df-phtpy 23140  df-phtpc 23161  df-om1 23175  df-pi1 23177
This theorem is referenced by:  pi1coghm  23230
  Copyright terms: Public domain W3C validator