Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimss1 Structured version   Visualization version   GIF version

Theorem flimss1 22581
 Description: A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimss1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . . 7 𝐾 = 𝐾
21flimelbas 22576 . . . . . 6 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 𝐾)
32adantl 485 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 𝐾)
4 simpl2 1189 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
5 filunibas 22489 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
64, 5syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 = 𝑋)
71flimfil 22577 . . . . . . . 8 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐾))
87adantl 485 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘ 𝐾))
9 filunibas 22489 . . . . . . 7 (𝐹 ∈ (Fil‘ 𝐾) → 𝐹 = 𝐾)
108, 9syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 = 𝐾)
116, 10eqtr3d 2861 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = 𝐾)
123, 11eleqtrrd 2919 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥𝑋)
13 simpl1 1188 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
14 topontop 21521 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1513, 14syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ Top)
16 flimtop 22573 . . . . . . 7 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐾 ∈ Top)
1716adantl 485 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐾 ∈ Top)
18 toponuni 21522 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1913, 18syl 17 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = 𝐽)
2019, 11eqtr3d 2861 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 = 𝐾)
21 simpl3 1190 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽𝐾)
22 eqid 2824 . . . . . . 7 𝐽 = 𝐽
2322, 1topssnei 21732 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐽 = 𝐾) ∧ 𝐽𝐾) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥}))
2415, 17, 20, 21, 23syl31anc 1370 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥}))
25 flimneiss 22574 . . . . . 6 (𝑥 ∈ (𝐾 fLim 𝐹) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹)
2625adantl 485 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹)
2724, 26sstrd 3963 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)
28 elflim 22579 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
2913, 4, 28syl2anc 587 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
3012, 27, 29mpbir2and 712 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹))
3130ex 416 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹)))
3231ssrdv 3959 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ⊆ wss 3919  {csn 4550  ∪ cuni 4824  ‘cfv 6343  (class class class)co 7149  Topctop 21501  TopOnctopon 21518  neicnei 21705  Filcfil 22453   fLim cflim 22542 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-fbas 20542  df-top 21502  df-topon 21519  df-ntr 21628  df-nei 21706  df-fil 22454  df-flim 22547 This theorem is referenced by:  flimcf  22590
 Copyright terms: Public domain W3C validator