| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . . . 7
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 2 | 1 | flimelbas 23911 |
. . . . . 6
⊢ (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 ∈ ∪ 𝐾) |
| 3 | 2 | adantl 481 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ ∪ 𝐾) |
| 4 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
| 5 | | filunibas 23824 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 =
𝑋) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ∪ 𝐹 = 𝑋) |
| 7 | 1 | flimfil 23912 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐾)) |
| 8 | 7 | adantl 481 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘∪ 𝐾)) |
| 9 | | filunibas 23824 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘∪ 𝐾)
→ ∪ 𝐹 = ∪ 𝐾) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ∪ 𝐹 = ∪
𝐾) |
| 11 | 6, 10 | eqtr3d 2773 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = ∪ 𝐾) |
| 12 | 3, 11 | eleqtrrd 2838 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ 𝑋) |
| 13 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | | topontop 22856 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 15 | 13, 14 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ Top) |
| 16 | | flimtop 23908 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐾 ∈ Top) |
| 17 | 16 | adantl 481 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐾 ∈ Top) |
| 18 | | toponuni 22857 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 19 | 13, 18 | syl 17 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = ∪ 𝐽) |
| 20 | 19, 11 | eqtr3d 2773 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ∪ 𝐽 = ∪
𝐾) |
| 21 | | simpl3 1194 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ⊆ 𝐾) |
| 22 | | eqid 2736 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 23 | 22, 1 | topssnei 23067 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∪ 𝐽 =
∪ 𝐾) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥})) |
| 24 | 15, 17, 20, 21, 23 | syl31anc 1375 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥})) |
| 25 | | flimneiss 23909 |
. . . . . 6
⊢ (𝑥 ∈ (𝐾 fLim 𝐹) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹) |
| 26 | 25 | adantl 481 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹) |
| 27 | 24, 26 | sstrd 3974 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹) |
| 28 | | elflim 23914 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) |
| 29 | 13, 4, 28 | syl2anc 584 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) |
| 30 | 12, 27, 29 | mpbir2and 713 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
| 31 | 30 | ex 412 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
| 32 | 31 | ssrdv 3969 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹)) |