MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimss1 Structured version   Visualization version   GIF version

Theorem flimss1 23124
Description: A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimss1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . 7 𝐾 = 𝐾
21flimelbas 23119 . . . . . 6 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 𝐾)
32adantl 482 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 𝐾)
4 simpl2 1191 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
5 filunibas 23032 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
64, 5syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 = 𝑋)
71flimfil 23120 . . . . . . . 8 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐾))
87adantl 482 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘ 𝐾))
9 filunibas 23032 . . . . . . 7 (𝐹 ∈ (Fil‘ 𝐾) → 𝐹 = 𝐾)
108, 9syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 = 𝐾)
116, 10eqtr3d 2780 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = 𝐾)
123, 11eleqtrrd 2842 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥𝑋)
13 simpl1 1190 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
14 topontop 22062 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1513, 14syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ Top)
16 flimtop 23116 . . . . . . 7 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐾 ∈ Top)
1716adantl 482 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐾 ∈ Top)
18 toponuni 22063 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1913, 18syl 17 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = 𝐽)
2019, 11eqtr3d 2780 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 = 𝐾)
21 simpl3 1192 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽𝐾)
22 eqid 2738 . . . . . . 7 𝐽 = 𝐽
2322, 1topssnei 22275 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐽 = 𝐾) ∧ 𝐽𝐾) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥}))
2415, 17, 20, 21, 23syl31anc 1372 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥}))
25 flimneiss 23117 . . . . . 6 (𝑥 ∈ (𝐾 fLim 𝐹) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹)
2625adantl 482 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹)
2724, 26sstrd 3931 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)
28 elflim 23122 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
2913, 4, 28syl2anc 584 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
3012, 27, 29mpbir2and 710 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹))
3130ex 413 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹)))
3231ssrdv 3927 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887  {csn 4561   cuni 4839  cfv 6433  (class class class)co 7275  Topctop 22042  TopOnctopon 22059  neicnei 22248  Filcfil 22996   fLim cflim 23085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fbas 20594  df-top 22043  df-topon 22060  df-ntr 22171  df-nei 22249  df-fil 22997  df-flim 23090
This theorem is referenced by:  flimcf  23133
  Copyright terms: Public domain W3C validator