MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimss1 Structured version   Visualization version   GIF version

Theorem flimss1 23916
Description: A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimss1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 𝐾 = 𝐾
21flimelbas 23911 . . . . . 6 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 𝐾)
32adantl 481 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 𝐾)
4 simpl2 1193 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
5 filunibas 23824 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
64, 5syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 = 𝑋)
71flimfil 23912 . . . . . . . 8 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐾))
87adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘ 𝐾))
9 filunibas 23824 . . . . . . 7 (𝐹 ∈ (Fil‘ 𝐾) → 𝐹 = 𝐾)
108, 9syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 = 𝐾)
116, 10eqtr3d 2773 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = 𝐾)
123, 11eleqtrrd 2838 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥𝑋)
13 simpl1 1192 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
14 topontop 22856 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1513, 14syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ Top)
16 flimtop 23908 . . . . . . 7 (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐾 ∈ Top)
1716adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐾 ∈ Top)
18 toponuni 22857 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1913, 18syl 17 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = 𝐽)
2019, 11eqtr3d 2773 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 = 𝐾)
21 simpl3 1194 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽𝐾)
22 eqid 2736 . . . . . . 7 𝐽 = 𝐽
2322, 1topssnei 23067 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐽 = 𝐾) ∧ 𝐽𝐾) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥}))
2415, 17, 20, 21, 23syl31anc 1375 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥}))
25 flimneiss 23909 . . . . . 6 (𝑥 ∈ (𝐾 fLim 𝐹) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹)
2625adantl 481 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹)
2724, 26sstrd 3974 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)
28 elflim 23914 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
2913, 4, 28syl2anc 584 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
3012, 27, 29mpbir2and 713 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹))
3130ex 412 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹)))
3231ssrdv 3969 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  {csn 4606   cuni 4888  cfv 6536  (class class class)co 7410  Topctop 22836  TopOnctopon 22853  neicnei 23040  Filcfil 23788   fLim cflim 23877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-fbas 21317  df-top 22837  df-topon 22854  df-ntr 22963  df-nei 23041  df-fil 23789  df-flim 23882
This theorem is referenced by:  flimcf  23925
  Copyright terms: Public domain W3C validator