Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐾 =
∪ 𝐾 |
2 | 1 | flimelbas 23027 |
. . . . . 6
⊢ (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 ∈ ∪ 𝐾) |
3 | 2 | adantl 481 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ ∪ 𝐾) |
4 | | simpl2 1190 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
5 | | filunibas 22940 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 =
𝑋) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ∪ 𝐹 = 𝑋) |
7 | 1 | flimfil 23028 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐾)) |
8 | 7 | adantl 481 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐹 ∈ (Fil‘∪ 𝐾)) |
9 | | filunibas 22940 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘∪ 𝐾)
→ ∪ 𝐹 = ∪ 𝐾) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ∪ 𝐹 = ∪
𝐾) |
11 | 6, 10 | eqtr3d 2780 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = ∪ 𝐾) |
12 | 3, 11 | eleqtrrd 2842 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ 𝑋) |
13 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | | topontop 21970 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ∈ Top) |
16 | | flimtop 23024 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐾 fLim 𝐹) → 𝐾 ∈ Top) |
17 | 16 | adantl 481 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐾 ∈ Top) |
18 | | toponuni 21971 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
19 | 13, 18 | syl 17 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑋 = ∪ 𝐽) |
20 | 19, 11 | eqtr3d 2780 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ∪ 𝐽 = ∪
𝐾) |
21 | | simpl3 1191 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝐽 ⊆ 𝐾) |
22 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
23 | 22, 1 | topssnei 22183 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∪ 𝐽 =
∪ 𝐾) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥})) |
24 | 15, 17, 20, 21, 23 | syl31anc 1371 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ ((nei‘𝐾)‘{𝑥})) |
25 | | flimneiss 23025 |
. . . . . 6
⊢ (𝑥 ∈ (𝐾 fLim 𝐹) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹) |
26 | 25 | adantl 481 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐾)‘{𝑥}) ⊆ 𝐹) |
27 | 24, 26 | sstrd 3927 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹) |
28 | | elflim 23030 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) |
29 | 13, 4, 28 | syl2anc 583 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) |
30 | 12, 27, 29 | mpbir2and 709 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fLim 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
31 | 30 | ex 412 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐾 fLim 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
32 | 31 | ssrdv 3923 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹)) |