Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimtop Structured version   Visualization version   GIF version

Theorem flimtop 22680
 Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimtop (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)

Proof of Theorem flimtop
StepHypRef Expression
1 eqid 2759 . . . 4 𝐽 = 𝐽
21elflim2 22679 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽) ∧ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
32simplbi 501 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽))
43simp1d 1140 1 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1085   ∈ wcel 2112   ⊆ wss 3861  𝒫 cpw 4498  {csn 4526  ∪ cuni 4802  ran crn 5530  ‘cfv 6341  (class class class)co 7157  Topctop 21608  neicnei 21812  Filcfil 22560   fLim cflim 22649 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pr 5303 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-opab 5100  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-iota 6300  df-fun 6343  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-top 21609  df-flim 22654 This theorem is referenced by:  flimfil  22684  flimtopon  22685  flimss1  22688  flimclsi  22693  hausflimlem  22694  flimsncls  22701  cnpflfi  22714  flimfcls  22741  flimfnfcls  22743
 Copyright terms: Public domain W3C validator