MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimtop Structured version   Visualization version   GIF version

Theorem flimtop 22292
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimtop (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)

Proof of Theorem flimtop
StepHypRef Expression
1 eqid 2771 . . . 4 𝐽 = 𝐽
21elflim2 22291 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽) ∧ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
32simplbi 490 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽))
43simp1d 1123 1 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069  wcel 2051  wss 3822  𝒫 cpw 4416  {csn 4435   cuni 4708  ran crn 5404  cfv 6185  (class class class)co 6974  Topctop 21220  neicnei 21424  Filcfil 22172   fLim cflim 22261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-iota 6149  df-fun 6187  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-top 21221  df-flim 22266
This theorem is referenced by:  flimfil  22296  flimtopon  22297  flimss1  22300  flimclsi  22305  hausflimlem  22306  flimsncls  22313  cnpflfi  22326  flimfcls  22353  flimfnfcls  22355
  Copyright terms: Public domain W3C validator