![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimtop | Structured version Visualization version GIF version |
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
flimtop | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | elflim2 22291 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽) ∧ (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
3 | 2 | simplbi 490 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽)) |
4 | 3 | simp1d 1123 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 ∈ wcel 2051 ⊆ wss 3822 𝒫 cpw 4416 {csn 4435 ∪ cuni 4708 ran crn 5404 ‘cfv 6185 (class class class)co 6974 Topctop 21220 neicnei 21424 Filcfil 22172 fLim cflim 22261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-iota 6149 df-fun 6187 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-top 21221 df-flim 22266 |
This theorem is referenced by: flimfil 22296 flimtopon 22297 flimss1 22300 flimclsi 22305 hausflimlem 22306 flimsncls 22313 cnpflfi 22326 flimfcls 22353 flimfnfcls 22355 |
Copyright terms: Public domain | W3C validator |