MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfil Structured version   Visualization version   GIF version

Theorem flimfil 23889
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimuni.1 𝑋 = 𝐽
Assertion
Ref Expression
flimfil (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem flimfil
StepHypRef Expression
1 flimuni.1 . . . . . 6 𝑋 = 𝐽
21elflim2 23884 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
32simplbi 497 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋))
43simp2d 1143 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ran Fil)
5 filunirn 23802 . . 3 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
64, 5sylib 218 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐹))
73simp3d 1144 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
8 sspwuni 5059 . . . . 5 (𝐹 ⊆ 𝒫 𝑋 𝐹𝑋)
97, 8sylib 218 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹𝑋)
10 flimneiss 23886 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)
11 flimtop 23885 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
121topopn 22826 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
1311, 12syl 17 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋𝐽)
141flimelbas 23888 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴𝑋)
15 opnneip 23039 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋𝐽𝐴𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴}))
1611, 13, 14, 15syl3anc 1373 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴}))
1710, 16sseldd 3944 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋𝐹)
18 elssuni 4897 . . . . 5 (𝑋𝐹𝑋 𝐹)
1917, 18syl 17 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 𝐹)
209, 19eqssd 3961 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 = 𝑋)
2120fveq2d 6844 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (Fil‘ 𝐹) = (Fil‘𝑋))
226, 21eleqtrd 2830 1 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559  {csn 4585   cuni 4867  ran crn 5632  cfv 6499  (class class class)co 7369  Topctop 22813  neicnei 23017  Filcfil 23765   fLim cflim 23854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-fbas 21293  df-top 22814  df-nei 23018  df-fil 23766  df-flim 23859
This theorem is referenced by:  flimtopon  23890  flimss1  23893  flimclsi  23898  hausflimlem  23899  flimsncls  23906  cnpflfi  23919  flimfcls  23946  flimcfil  25247
  Copyright terms: Public domain W3C validator