Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimfil | Structured version Visualization version GIF version |
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flimuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flimfil | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimuni.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | elflim2 23023 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
3 | 2 | simplbi 497 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋)) |
4 | 3 | simp2d 1141 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ ∪ ran Fil) |
5 | filunirn 22941 | . . 3 ⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐹)) |
7 | 3 | simp3d 1142 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ⊆ 𝒫 𝑋) |
8 | sspwuni 5025 | . . . . 5 ⊢ (𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋) | |
9 | 7, 8 | sylib 217 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 ⊆ 𝑋) |
10 | flimneiss 23025 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) | |
11 | flimtop 23024 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
12 | 1 | topopn 21963 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ 𝐽) |
14 | 1 | flimelbas 23027 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
15 | opnneip 22178 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴})) | |
16 | 11, 13, 14, 15 | syl3anc 1369 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴})) |
17 | 10, 16 | sseldd 3918 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ 𝐹) |
18 | elssuni 4868 | . . . . 5 ⊢ (𝑋 ∈ 𝐹 → 𝑋 ⊆ ∪ 𝐹) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ⊆ ∪ 𝐹) |
20 | 9, 19 | eqssd 3934 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 = 𝑋) |
21 | 20 | fveq2d 6760 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (Fil‘∪ 𝐹) = (Fil‘𝑋)) |
22 | 6, 21 | eleqtrd 2841 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Topctop 21950 neicnei 22156 Filcfil 22904 fLim cflim 22993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-fbas 20507 df-top 21951 df-nei 22157 df-fil 22905 df-flim 22998 |
This theorem is referenced by: flimtopon 23029 flimss1 23032 flimclsi 23037 hausflimlem 23038 flimsncls 23045 cnpflfi 23058 flimfcls 23085 flimcfil 24383 |
Copyright terms: Public domain | W3C validator |