![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimfil | Structured version Visualization version GIF version |
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flimuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flimfil | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimuni.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | elflim2 23993 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
3 | 2 | simplbi 497 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋)) |
4 | 3 | simp2d 1143 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ ∪ ran Fil) |
5 | filunirn 23911 | . . 3 ⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) | |
6 | 4, 5 | sylib 218 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐹)) |
7 | 3 | simp3d 1144 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ⊆ 𝒫 𝑋) |
8 | sspwuni 5123 | . . . . 5 ⊢ (𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋) | |
9 | 7, 8 | sylib 218 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 ⊆ 𝑋) |
10 | flimneiss 23995 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) | |
11 | flimtop 23994 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
12 | 1 | topopn 22933 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ 𝐽) |
14 | 1 | flimelbas 23997 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
15 | opnneip 23148 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴})) | |
16 | 11, 13, 14, 15 | syl3anc 1371 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴})) |
17 | 10, 16 | sseldd 4009 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ 𝐹) |
18 | elssuni 4961 | . . . . 5 ⊢ (𝑋 ∈ 𝐹 → 𝑋 ⊆ ∪ 𝐹) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ⊆ ∪ 𝐹) |
20 | 9, 19 | eqssd 4026 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 = 𝑋) |
21 | 20 | fveq2d 6924 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (Fil‘∪ 𝐹) = (Fil‘𝑋)) |
22 | 6, 21 | eleqtrd 2846 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ran crn 5701 ‘cfv 6573 (class class class)co 7448 Topctop 22920 neicnei 23126 Filcfil 23874 fLim cflim 23963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-top 22921 df-nei 23127 df-fil 23875 df-flim 23968 |
This theorem is referenced by: flimtopon 23999 flimss1 24002 flimclsi 24007 hausflimlem 24008 flimsncls 24015 cnpflfi 24028 flimfcls 24055 flimcfil 25367 |
Copyright terms: Public domain | W3C validator |