Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimfil | Structured version Visualization version GIF version |
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flimuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flimfil | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimuni.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | elflim2 23115 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
3 | 2 | simplbi 498 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋)) |
4 | 3 | simp2d 1142 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ ∪ ran Fil) |
5 | filunirn 23033 | . . 3 ⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐹)) |
7 | 3 | simp3d 1143 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ⊆ 𝒫 𝑋) |
8 | sspwuni 5029 | . . . . 5 ⊢ (𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋) | |
9 | 7, 8 | sylib 217 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 ⊆ 𝑋) |
10 | flimneiss 23117 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) | |
11 | flimtop 23116 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
12 | 1 | topopn 22055 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ 𝐽) |
14 | 1 | flimelbas 23119 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
15 | opnneip 22270 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴})) | |
16 | 11, 13, 14, 15 | syl3anc 1370 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴})) |
17 | 10, 16 | sseldd 3922 | . . . . 5 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ 𝐹) |
18 | elssuni 4871 | . . . . 5 ⊢ (𝑋 ∈ 𝐹 → 𝑋 ⊆ ∪ 𝐹) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ⊆ ∪ 𝐹) |
20 | 9, 19 | eqssd 3938 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 = 𝑋) |
21 | 20 | fveq2d 6778 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (Fil‘∪ 𝐹) = (Fil‘𝑋)) |
22 | 6, 21 | eleqtrd 2841 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Topctop 22042 neicnei 22248 Filcfil 22996 fLim cflim 23085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-fbas 20594 df-top 22043 df-nei 22249 df-fil 22997 df-flim 23090 |
This theorem is referenced by: flimtopon 23121 flimss1 23124 flimclsi 23129 hausflimlem 23130 flimsncls 23137 cnpflfi 23150 flimfcls 23177 flimcfil 24478 |
Copyright terms: Public domain | W3C validator |