| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimss2 | Structured version Visualization version GIF version | ||
| Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| flimss2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | flimelbas 23903 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 ∈ ∪ 𝐽) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ ∪ 𝐽) |
| 4 | simpl1 1192 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 5 | toponuni 22849 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑋 = ∪ 𝐽) |
| 7 | 3, 6 | eleqtrrd 2836 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ 𝑋) |
| 8 | flimneiss 23901 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐺) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺) |
| 10 | simpl3 1194 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐺 ⊆ 𝐹) | |
| 11 | 9, 10 | sstrd 3941 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹) |
| 12 | simpl2 1193 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐹 ∈ (Fil‘𝑋)) | |
| 13 | elflim 23906 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) | |
| 14 | 4, 12, 13 | syl2anc 584 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) |
| 15 | 7, 11, 14 | mpbir2and 713 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
| 16 | 15 | ex 412 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
| 17 | 16 | ssrdv 3936 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 ∪ cuni 4860 ‘cfv 6489 (class class class)co 7355 TopOnctopon 22845 neicnei 23032 Filcfil 23780 fLim cflim 23869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-fbas 21297 df-top 22829 df-topon 22846 df-fil 23781 df-flim 23874 |
| This theorem is referenced by: flimfnfcls 23963 cnpfcf 23976 |
| Copyright terms: Public domain | W3C validator |