MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimss2 Structured version   Visualization version   GIF version

Theorem flimss2 23697
Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimss2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) β†’ (𝐽 fLim 𝐺) βŠ† (𝐽 fLim 𝐹))

Proof of Theorem flimss2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . 7 βˆͺ 𝐽 = βˆͺ 𝐽
21flimelbas 23693 . . . . . 6 (π‘₯ ∈ (𝐽 fLim 𝐺) β†’ π‘₯ ∈ βˆͺ 𝐽)
32adantl 481 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ π‘₯ ∈ βˆͺ 𝐽)
4 simpl1 1190 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
5 toponuni 22637 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
64, 5syl 17 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ 𝑋 = βˆͺ 𝐽)
73, 6eleqtrrd 2835 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ π‘₯ ∈ 𝑋)
8 flimneiss 23691 . . . . . 6 (π‘₯ ∈ (𝐽 fLim 𝐺) β†’ ((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐺)
98adantl 481 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ ((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐺)
10 simpl3 1192 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ 𝐺 βŠ† 𝐹)
119, 10sstrd 3992 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ ((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹)
12 simpl2 1191 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ 𝐹 ∈ (Filβ€˜π‘‹))
13 elflim 23696 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (π‘₯ ∈ (𝐽 fLim 𝐹) ↔ (π‘₯ ∈ 𝑋 ∧ ((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹)))
144, 12, 13syl2anc 583 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ (π‘₯ ∈ (𝐽 fLim 𝐹) ↔ (π‘₯ ∈ 𝑋 ∧ ((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹)))
157, 11, 14mpbir2and 710 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) ∧ π‘₯ ∈ (𝐽 fLim 𝐺)) β†’ π‘₯ ∈ (𝐽 fLim 𝐹))
1615ex 412 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) β†’ (π‘₯ ∈ (𝐽 fLim 𝐺) β†’ π‘₯ ∈ (𝐽 fLim 𝐹)))
1716ssrdv 3988 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹) ∧ 𝐺 βŠ† 𝐹) β†’ (𝐽 fLim 𝐺) βŠ† (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   βŠ† wss 3948  {csn 4628  βˆͺ cuni 4908  β€˜cfv 6543  (class class class)co 7412  TopOnctopon 22633  neicnei 22822  Filcfil 23570   fLim cflim 23659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-fbas 21142  df-top 22617  df-topon 22634  df-fil 23571  df-flim 23664
This theorem is referenced by:  flimfnfcls  23753  cnpfcf  23766
  Copyright terms: Public domain W3C validator