![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimss2 | Structured version Visualization version GIF version |
Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
flimss2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | flimelbas 22191 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 ∈ ∪ 𝐽) |
3 | 2 | adantl 475 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ ∪ 𝐽) |
4 | simpl1 1199 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐽 ∈ (TopOn‘𝑋)) | |
5 | toponuni 21137 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑋 = ∪ 𝐽) |
7 | 3, 6 | eleqtrrd 2862 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ 𝑋) |
8 | flimneiss 22189 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐺) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺) | |
9 | 8 | adantl 475 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺) |
10 | simpl3 1203 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐺 ⊆ 𝐹) | |
11 | 9, 10 | sstrd 3831 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹) |
12 | simpl2 1201 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐹 ∈ (Fil‘𝑋)) | |
13 | elflim 22194 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) | |
14 | 4, 12, 13 | syl2anc 579 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) |
15 | 7, 11, 14 | mpbir2and 703 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
16 | 15 | ex 403 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
17 | 16 | ssrdv 3827 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 {csn 4398 ∪ cuni 4673 ‘cfv 6137 (class class class)co 6924 TopOnctopon 21133 neicnei 21320 Filcfil 22068 fLim cflim 22157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-fbas 20150 df-top 21117 df-topon 21134 df-fil 22069 df-flim 22162 |
This theorem is referenced by: flimfnfcls 22251 cnpfcf 22264 |
Copyright terms: Public domain | W3C validator |