![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimss2 | Structured version Visualization version GIF version |
Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
flimss2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | flimelbas 23997 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 ∈ ∪ 𝐽) |
3 | 2 | adantl 481 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ ∪ 𝐽) |
4 | simpl1 1191 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐽 ∈ (TopOn‘𝑋)) | |
5 | toponuni 22941 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑋 = ∪ 𝐽) |
7 | 3, 6 | eleqtrrd 2847 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ 𝑋) |
8 | flimneiss 23995 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐺) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺) | |
9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺) |
10 | simpl3 1193 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐺 ⊆ 𝐹) | |
11 | 9, 10 | sstrd 4019 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹) |
12 | simpl2 1192 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐹 ∈ (Fil‘𝑋)) | |
13 | elflim 24000 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) | |
14 | 4, 12, 13 | syl2anc 583 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))) |
15 | 7, 11, 14 | mpbir2and 712 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
16 | 15 | ex 412 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
17 | 16 | ssrdv 4014 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 TopOnctopon 22937 neicnei 23126 Filcfil 23874 fLim cflim 23963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-top 22921 df-topon 22938 df-fil 23875 df-flim 23968 |
This theorem is referenced by: flimfnfcls 24057 cnpfcf 24070 |
Copyright terms: Public domain | W3C validator |