MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimss2 Structured version   Visualization version   GIF version

Theorem flimss2 23859
Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimss2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 𝐽 = 𝐽
21flimelbas 23855 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 𝐽)
32adantl 481 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 𝐽)
4 simpl1 1192 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐽 ∈ (TopOn‘𝑋))
5 toponuni 22801 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
64, 5syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑋 = 𝐽)
73, 6eleqtrrd 2831 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥𝑋)
8 flimneiss 23853 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐺) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺)
98adantl 481 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺)
10 simpl3 1194 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐺𝐹)
119, 10sstrd 3957 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)
12 simpl2 1193 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐹 ∈ (Fil‘𝑋))
13 elflim 23858 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
144, 12, 13syl2anc 584 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
157, 11, 14mpbir2and 713 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ (𝐽 fLim 𝐹))
1615ex 412 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) → (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 ∈ (𝐽 fLim 𝐹)))
1716ssrdv 3952 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914  {csn 4589   cuni 4871  cfv 6511  (class class class)co 7387  TopOnctopon 22797  neicnei 22984  Filcfil 23732   fLim cflim 23821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fbas 21261  df-top 22781  df-topon 22798  df-fil 23733  df-flim 23826
This theorem is referenced by:  flimfnfcls  23915  cnpfcf  23928
  Copyright terms: Public domain W3C validator