MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimss2 Structured version   Visualization version   GIF version

Theorem flimss2 23967
Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimss2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . . . 7 𝐽 = 𝐽
21flimelbas 23963 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 𝐽)
32adantl 480 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 𝐽)
4 simpl1 1188 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐽 ∈ (TopOn‘𝑋))
5 toponuni 22907 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
64, 5syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑋 = 𝐽)
73, 6eleqtrrd 2829 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥𝑋)
8 flimneiss 23961 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐺) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺)
98adantl 480 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐺)
10 simpl3 1190 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐺𝐹)
119, 10sstrd 3990 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)
12 simpl2 1189 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝐹 ∈ (Fil‘𝑋))
13 elflim 23966 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
144, 12, 13syl2anc 582 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)))
157, 11, 14mpbir2and 711 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) ∧ 𝑥 ∈ (𝐽 fLim 𝐺)) → 𝑥 ∈ (𝐽 fLim 𝐹))
1615ex 411 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) → (𝑥 ∈ (𝐽 fLim 𝐺) → 𝑥 ∈ (𝐽 fLim 𝐹)))
1716ssrdv 3985 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wss 3947  {csn 4633   cuni 4913  cfv 6554  (class class class)co 7424  TopOnctopon 22903  neicnei 23092  Filcfil 23840   fLim cflim 23929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-fbas 21340  df-top 22887  df-topon 22904  df-fil 23841  df-flim 23934
This theorem is referenced by:  flimfnfcls  24023  cnpfcf  24036
  Copyright terms: Public domain W3C validator