Step | Hyp | Ref
| Expression |
1 | | prdsidlem.z |
. . . 4
⊢ 0 =
(0g ∘ 𝑅) |
2 | | fvexd 6771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ V) |
3 | | prdsplusgcl.r |
. . . . . 6
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
4 | 3 | feqmptd 6819 |
. . . . 5
⊢ (𝜑 → 𝑅 = (𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))) |
5 | | fn0g 18262 |
. . . . . . 7
⊢
0g Fn V |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0g Fn
V) |
7 | | dffn5 6810 |
. . . . . 6
⊢
(0g Fn V ↔ 0g = (𝑥 ∈ V ↦ (0g‘𝑥))) |
8 | 6, 7 | sylib 217 |
. . . . 5
⊢ (𝜑 → 0g = (𝑥 ∈ V ↦
(0g‘𝑥))) |
9 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = (𝑅‘𝑦) → (0g‘𝑥) = (0g‘(𝑅‘𝑦))) |
10 | 2, 4, 8, 9 | fmptco 6983 |
. . . 4
⊢ (𝜑 → (0g ∘
𝑅) = (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦)))) |
11 | 1, 10 | eqtrid 2790 |
. . 3
⊢ (𝜑 → 0 = (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦)))) |
12 | 3 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Mnd) |
13 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
14 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘(𝑅‘𝑦)) = (0g‘(𝑅‘𝑦)) |
15 | 13, 14 | mndidcl 18315 |
. . . . . 6
⊢ ((𝑅‘𝑦) ∈ Mnd →
(0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
16 | 12, 15 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
17 | 16 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
18 | | prdsplusgcl.y |
. . . . 5
⊢ 𝑌 = (𝑆Xs𝑅) |
19 | | prdsplusgcl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
20 | | prdsplusgcl.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
21 | | prdsplusgcl.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
22 | 3 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → 𝑅 Fn 𝐼) |
23 | 18, 19, 20, 21, 22 | prdsbasmpt 17098 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦))) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐼 (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦)))) |
24 | 17, 23 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦))) ∈ 𝐵) |
25 | 11, 24 | eqeltrd 2839 |
. 2
⊢ (𝜑 → 0 ∈ 𝐵) |
26 | 1 | fveq1i 6757 |
. . . . . . . . . 10
⊢ ( 0 ‘𝑦) = ((0g ∘
𝑅)‘𝑦) |
27 | | fvco2 6847 |
. . . . . . . . . . 11
⊢ ((𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑦) = (0g‘(𝑅‘𝑦))) |
28 | 22, 27 | sylan 579 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑦) = (0g‘(𝑅‘𝑦))) |
29 | 26, 28 | eqtrid 2790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ( 0 ‘𝑦) = (0g‘(𝑅‘𝑦))) |
30 | 29 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ( 0 ‘𝑦) = (0g‘(𝑅‘𝑦))) |
31 | 30 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦))) |
32 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅:𝐼⟶Mnd) |
33 | 32 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Mnd) |
34 | 20 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
35 | 21 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
36 | 22 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
37 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑥 ∈ 𝐵) |
38 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
39 | 18, 19, 34, 35, 36, 37, 38 | prdsbasprj 17100 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
40 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘(𝑅‘𝑦)) = (+g‘(𝑅‘𝑦)) |
41 | 13, 40, 14 | mndlid 18320 |
. . . . . . . 8
⊢ (((𝑅‘𝑦) ∈ Mnd ∧ (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) → ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
42 | 33, 39, 41 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
43 | 31, 42 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
44 | 43 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐼 ↦ (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
45 | 20 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝑉) |
46 | 21 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ∈ 𝑊) |
47 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 Fn 𝐼) |
48 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ∈ 𝐵) |
49 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
50 | | prdsplusgcl.p |
. . . . . 6
⊢ + =
(+g‘𝑌) |
51 | 18, 19, 45, 46, 47, 48, 49, 50 | prdsplusgval 17101 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = (𝑦 ∈ 𝐼 ↦ (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)))) |
52 | 18, 19, 45, 46, 47, 49 | prdsbasfn 17099 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn 𝐼) |
53 | | dffn5 6810 |
. . . . . 6
⊢ (𝑥 Fn 𝐼 ↔ 𝑥 = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
54 | 52, 53 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
55 | 44, 51, 54 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
56 | 30 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)) = ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦)))) |
57 | 13, 40, 14 | mndrid 18321 |
. . . . . . . 8
⊢ (((𝑅‘𝑦) ∈ Mnd ∧ (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦))) = (𝑥‘𝑦)) |
58 | 33, 39, 57 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦))) = (𝑥‘𝑦)) |
59 | 56, 58 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)) = (𝑥‘𝑦)) |
60 | 59 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐼 ↦ ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
61 | 18, 19, 45, 46, 47, 49, 48, 50 | prdsplusgval 17101 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑦 ∈ 𝐼 ↦ ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)))) |
62 | 60, 61, 54 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
63 | 55, 62 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
64 | 63 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
65 | 25, 64 | jca 511 |
1
⊢ (𝜑 → ( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) |