MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsidlem Structured version   Visualization version   GIF version

Theorem prdsidlem 18674
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y 𝑌 = (𝑆Xs𝑅)
prdsplusgcl.b 𝐵 = (Base‘𝑌)
prdsplusgcl.p + = (+g𝑌)
prdsplusgcl.s (𝜑𝑆𝑉)
prdsplusgcl.i (𝜑𝐼𝑊)
prdsplusgcl.r (𝜑𝑅:𝐼⟶Mnd)
prdsidlem.z 0 = (0g𝑅)
Assertion
Ref Expression
prdsidlem (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   0 (𝑥)

Proof of Theorem prdsidlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsidlem.z . . . 4 0 = (0g𝑅)
2 fvexd 6837 . . . . 5 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ V)
3 prdsplusgcl.r . . . . . 6 (𝜑𝑅:𝐼⟶Mnd)
43feqmptd 6890 . . . . 5 (𝜑𝑅 = (𝑦𝐼 ↦ (𝑅𝑦)))
5 fn0g 18568 . . . . . . 7 0g Fn V
65a1i 11 . . . . . 6 (𝜑 → 0g Fn V)
7 dffn5 6880 . . . . . 6 (0g Fn V ↔ 0g = (𝑥 ∈ V ↦ (0g𝑥)))
86, 7sylib 218 . . . . 5 (𝜑 → 0g = (𝑥 ∈ V ↦ (0g𝑥)))
9 fveq2 6822 . . . . 5 (𝑥 = (𝑅𝑦) → (0g𝑥) = (0g‘(𝑅𝑦)))
102, 4, 8, 9fmptco 7062 . . . 4 (𝜑 → (0g𝑅) = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
111, 10eqtrid 2778 . . 3 (𝜑0 = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
123ffvelcdmda 7017 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
13 eqid 2731 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
14 eqid 2731 . . . . . . 7 (0g‘(𝑅𝑦)) = (0g‘(𝑅𝑦))
1513, 14mndidcl 18654 . . . . . 6 ((𝑅𝑦) ∈ Mnd → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1612, 15syl 17 . . . . 5 ((𝜑𝑦𝐼) → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1716ralrimiva 3124 . . . 4 (𝜑 → ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
18 prdsplusgcl.y . . . . 5 𝑌 = (𝑆Xs𝑅)
19 prdsplusgcl.b . . . . 5 𝐵 = (Base‘𝑌)
20 prdsplusgcl.s . . . . 5 (𝜑𝑆𝑉)
21 prdsplusgcl.i . . . . 5 (𝜑𝐼𝑊)
223ffnd 6652 . . . . 5 (𝜑𝑅 Fn 𝐼)
2318, 19, 20, 21, 22prdsbasmpt 17371 . . . 4 (𝜑 → ((𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦))))
2417, 23mpbird 257 . . 3 (𝜑 → (𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵)
2511, 24eqeltrd 2831 . 2 (𝜑0𝐵)
261fveq1i 6823 . . . . . . . . . 10 ( 0𝑦) = ((0g𝑅)‘𝑦)
27 fvco2 6919 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2822, 27sylan 580 . . . . . . . . . 10 ((𝜑𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2926, 28eqtrid 2778 . . . . . . . . 9 ((𝜑𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3029adantlr 715 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3130oveq1d 7361 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)))
323adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅:𝐼⟶Mnd)
3332ffvelcdmda 7017 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
3420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑆𝑉)
3521ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝐼𝑊)
3622ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
37 simplr 768 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑥𝐵)
38 simpr 484 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
3918, 19, 34, 35, 36, 37, 38prdsbasprj 17373 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑥𝑦) ∈ (Base‘(𝑅𝑦)))
40 eqid 2731 . . . . . . . . 9 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
4113, 40, 14mndlid 18659 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4233, 39, 41syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4331, 42eqtrd 2766 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4443mpteq2dva 5184 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
4520adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑆𝑉)
4621adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝐼𝑊)
4722adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
4825adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 0𝐵)
49 simpr 484 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐵)
50 prdsplusgcl.p . . . . . 6 + = (+g𝑌)
5118, 19, 45, 46, 47, 48, 49, 50prdsplusgval 17374 . . . . 5 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))))
5218, 19, 45, 46, 47, 49prdsbasfn 17372 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥 Fn 𝐼)
53 dffn5 6880 . . . . . 6 (𝑥 Fn 𝐼𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5452, 53sylib 218 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5544, 51, 543eqtr4d 2776 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
5630oveq2d 7362 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))))
5713, 40, 14mndrid 18660 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5833, 39, 57syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5956, 58eqtrd 2766 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = (𝑥𝑦))
6059mpteq2dva 5184 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
6118, 19, 45, 46, 47, 49, 48, 50prdsplusgval 17374 . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))))
6260, 61, 543eqtr4d 2776 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
6355, 62jca 511 . . 3 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6463ralrimiva 3124 . 2 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6525, 64jca 511 1 (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cmpt 5172  ccom 5620   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Xscprds 17346  Mndcmnd 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-prds 17348  df-mgm 18545  df-sgrp 18624  df-mnd 18640
This theorem is referenced by:  prdsmndd  18675  prds0g  18676
  Copyright terms: Public domain W3C validator