MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsidlem Structured version   Visualization version   GIF version

Theorem prdsidlem 18588
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y 𝑌 = (𝑆Xs𝑅)
prdsplusgcl.b 𝐵 = (Base‘𝑌)
prdsplusgcl.p + = (+g𝑌)
prdsplusgcl.s (𝜑𝑆𝑉)
prdsplusgcl.i (𝜑𝐼𝑊)
prdsplusgcl.r (𝜑𝑅:𝐼⟶Mnd)
prdsidlem.z 0 = (0g𝑅)
Assertion
Ref Expression
prdsidlem (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   0 (𝑥)

Proof of Theorem prdsidlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsidlem.z . . . 4 0 = (0g𝑅)
2 fvexd 6857 . . . . 5 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ V)
3 prdsplusgcl.r . . . . . 6 (𝜑𝑅:𝐼⟶Mnd)
43feqmptd 6910 . . . . 5 (𝜑𝑅 = (𝑦𝐼 ↦ (𝑅𝑦)))
5 fn0g 18518 . . . . . . 7 0g Fn V
65a1i 11 . . . . . 6 (𝜑 → 0g Fn V)
7 dffn5 6901 . . . . . 6 (0g Fn V ↔ 0g = (𝑥 ∈ V ↦ (0g𝑥)))
86, 7sylib 217 . . . . 5 (𝜑 → 0g = (𝑥 ∈ V ↦ (0g𝑥)))
9 fveq2 6842 . . . . 5 (𝑥 = (𝑅𝑦) → (0g𝑥) = (0g‘(𝑅𝑦)))
102, 4, 8, 9fmptco 7075 . . . 4 (𝜑 → (0g𝑅) = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
111, 10eqtrid 2788 . . 3 (𝜑0 = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
123ffvelcdmda 7035 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
13 eqid 2736 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
14 eqid 2736 . . . . . . 7 (0g‘(𝑅𝑦)) = (0g‘(𝑅𝑦))
1513, 14mndidcl 18571 . . . . . 6 ((𝑅𝑦) ∈ Mnd → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1612, 15syl 17 . . . . 5 ((𝜑𝑦𝐼) → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1716ralrimiva 3143 . . . 4 (𝜑 → ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
18 prdsplusgcl.y . . . . 5 𝑌 = (𝑆Xs𝑅)
19 prdsplusgcl.b . . . . 5 𝐵 = (Base‘𝑌)
20 prdsplusgcl.s . . . . 5 (𝜑𝑆𝑉)
21 prdsplusgcl.i . . . . 5 (𝜑𝐼𝑊)
223ffnd 6669 . . . . 5 (𝜑𝑅 Fn 𝐼)
2318, 19, 20, 21, 22prdsbasmpt 17352 . . . 4 (𝜑 → ((𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦))))
2417, 23mpbird 256 . . 3 (𝜑 → (𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵)
2511, 24eqeltrd 2838 . 2 (𝜑0𝐵)
261fveq1i 6843 . . . . . . . . . 10 ( 0𝑦) = ((0g𝑅)‘𝑦)
27 fvco2 6938 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2822, 27sylan 580 . . . . . . . . . 10 ((𝜑𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2926, 28eqtrid 2788 . . . . . . . . 9 ((𝜑𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3029adantlr 713 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3130oveq1d 7372 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)))
323adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅:𝐼⟶Mnd)
3332ffvelcdmda 7035 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
3420ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑆𝑉)
3521ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝐼𝑊)
3622ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
37 simplr 767 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑥𝐵)
38 simpr 485 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
3918, 19, 34, 35, 36, 37, 38prdsbasprj 17354 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑥𝑦) ∈ (Base‘(𝑅𝑦)))
40 eqid 2736 . . . . . . . . 9 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
4113, 40, 14mndlid 18576 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4233, 39, 41syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4331, 42eqtrd 2776 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4443mpteq2dva 5205 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
4520adantr 481 . . . . . 6 ((𝜑𝑥𝐵) → 𝑆𝑉)
4621adantr 481 . . . . . 6 ((𝜑𝑥𝐵) → 𝐼𝑊)
4722adantr 481 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
4825adantr 481 . . . . . 6 ((𝜑𝑥𝐵) → 0𝐵)
49 simpr 485 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐵)
50 prdsplusgcl.p . . . . . 6 + = (+g𝑌)
5118, 19, 45, 46, 47, 48, 49, 50prdsplusgval 17355 . . . . 5 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))))
5218, 19, 45, 46, 47, 49prdsbasfn 17353 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥 Fn 𝐼)
53 dffn5 6901 . . . . . 6 (𝑥 Fn 𝐼𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5452, 53sylib 217 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5544, 51, 543eqtr4d 2786 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
5630oveq2d 7373 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))))
5713, 40, 14mndrid 18577 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5833, 39, 57syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5956, 58eqtrd 2776 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = (𝑥𝑦))
6059mpteq2dva 5205 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
6118, 19, 45, 46, 47, 49, 48, 50prdsplusgval 17355 . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))))
6260, 61, 543eqtr4d 2786 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
6355, 62jca 512 . . 3 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6463ralrimiva 3143 . 2 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6525, 64jca 512 1 (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cmpt 5188  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  0gc0g 17321  Xscprds 17327  Mndcmnd 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-mgm 18497  df-sgrp 18546  df-mnd 18557
This theorem is referenced by:  prdsmndd  18589  prds0g  18590
  Copyright terms: Public domain W3C validator