MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsidlem Structured version   Visualization version   GIF version

Theorem prdsidlem 18661
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y 𝑌 = (𝑆Xs𝑅)
prdsplusgcl.b 𝐵 = (Base‘𝑌)
prdsplusgcl.p + = (+g𝑌)
prdsplusgcl.s (𝜑𝑆𝑉)
prdsplusgcl.i (𝜑𝐼𝑊)
prdsplusgcl.r (𝜑𝑅:𝐼⟶Mnd)
prdsidlem.z 0 = (0g𝑅)
Assertion
Ref Expression
prdsidlem (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   0 (𝑥)

Proof of Theorem prdsidlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsidlem.z . . . 4 0 = (0g𝑅)
2 fvexd 6841 . . . . 5 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ V)
3 prdsplusgcl.r . . . . . 6 (𝜑𝑅:𝐼⟶Mnd)
43feqmptd 6895 . . . . 5 (𝜑𝑅 = (𝑦𝐼 ↦ (𝑅𝑦)))
5 fn0g 18555 . . . . . . 7 0g Fn V
65a1i 11 . . . . . 6 (𝜑 → 0g Fn V)
7 dffn5 6885 . . . . . 6 (0g Fn V ↔ 0g = (𝑥 ∈ V ↦ (0g𝑥)))
86, 7sylib 218 . . . . 5 (𝜑 → 0g = (𝑥 ∈ V ↦ (0g𝑥)))
9 fveq2 6826 . . . . 5 (𝑥 = (𝑅𝑦) → (0g𝑥) = (0g‘(𝑅𝑦)))
102, 4, 8, 9fmptco 7067 . . . 4 (𝜑 → (0g𝑅) = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
111, 10eqtrid 2776 . . 3 (𝜑0 = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
123ffvelcdmda 7022 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
13 eqid 2729 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
14 eqid 2729 . . . . . . 7 (0g‘(𝑅𝑦)) = (0g‘(𝑅𝑦))
1513, 14mndidcl 18641 . . . . . 6 ((𝑅𝑦) ∈ Mnd → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1612, 15syl 17 . . . . 5 ((𝜑𝑦𝐼) → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1716ralrimiva 3121 . . . 4 (𝜑 → ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
18 prdsplusgcl.y . . . . 5 𝑌 = (𝑆Xs𝑅)
19 prdsplusgcl.b . . . . 5 𝐵 = (Base‘𝑌)
20 prdsplusgcl.s . . . . 5 (𝜑𝑆𝑉)
21 prdsplusgcl.i . . . . 5 (𝜑𝐼𝑊)
223ffnd 6657 . . . . 5 (𝜑𝑅 Fn 𝐼)
2318, 19, 20, 21, 22prdsbasmpt 17392 . . . 4 (𝜑 → ((𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦))))
2417, 23mpbird 257 . . 3 (𝜑 → (𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵)
2511, 24eqeltrd 2828 . 2 (𝜑0𝐵)
261fveq1i 6827 . . . . . . . . . 10 ( 0𝑦) = ((0g𝑅)‘𝑦)
27 fvco2 6924 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2822, 27sylan 580 . . . . . . . . . 10 ((𝜑𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2926, 28eqtrid 2776 . . . . . . . . 9 ((𝜑𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3029adantlr 715 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3130oveq1d 7368 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)))
323adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅:𝐼⟶Mnd)
3332ffvelcdmda 7022 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
3420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑆𝑉)
3521ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝐼𝑊)
3622ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
37 simplr 768 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑥𝐵)
38 simpr 484 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
3918, 19, 34, 35, 36, 37, 38prdsbasprj 17394 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑥𝑦) ∈ (Base‘(𝑅𝑦)))
40 eqid 2729 . . . . . . . . 9 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
4113, 40, 14mndlid 18646 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4233, 39, 41syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4331, 42eqtrd 2764 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4443mpteq2dva 5188 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
4520adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑆𝑉)
4621adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝐼𝑊)
4722adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
4825adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 0𝐵)
49 simpr 484 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐵)
50 prdsplusgcl.p . . . . . 6 + = (+g𝑌)
5118, 19, 45, 46, 47, 48, 49, 50prdsplusgval 17395 . . . . 5 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))))
5218, 19, 45, 46, 47, 49prdsbasfn 17393 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥 Fn 𝐼)
53 dffn5 6885 . . . . . 6 (𝑥 Fn 𝐼𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5452, 53sylib 218 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5544, 51, 543eqtr4d 2774 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
5630oveq2d 7369 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))))
5713, 40, 14mndrid 18647 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5833, 39, 57syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5956, 58eqtrd 2764 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = (𝑥𝑦))
6059mpteq2dva 5188 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
6118, 19, 45, 46, 47, 49, 48, 50prdsplusgval 17395 . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))))
6260, 61, 543eqtr4d 2774 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
6355, 62jca 511 . . 3 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6463ralrimiva 3121 . 2 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6525, 64jca 511 1 (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cmpt 5176  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Xscprds 17367  Mndcmnd 18626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-mgm 18532  df-sgrp 18611  df-mnd 18627
This theorem is referenced by:  prdsmndd  18662  prds0g  18663
  Copyright terms: Public domain W3C validator