MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsidlem Structured version   Visualization version   GIF version

Theorem prdsidlem 18679
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y 𝑌 = (𝑆Xs𝑅)
prdsplusgcl.b 𝐵 = (Base‘𝑌)
prdsplusgcl.p + = (+g𝑌)
prdsplusgcl.s (𝜑𝑆𝑉)
prdsplusgcl.i (𝜑𝐼𝑊)
prdsplusgcl.r (𝜑𝑅:𝐼⟶Mnd)
prdsidlem.z 0 = (0g𝑅)
Assertion
Ref Expression
prdsidlem (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   0 (𝑥)

Proof of Theorem prdsidlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsidlem.z . . . 4 0 = (0g𝑅)
2 fvexd 6843 . . . . 5 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ V)
3 prdsplusgcl.r . . . . . 6 (𝜑𝑅:𝐼⟶Mnd)
43feqmptd 6896 . . . . 5 (𝜑𝑅 = (𝑦𝐼 ↦ (𝑅𝑦)))
5 fn0g 18573 . . . . . . 7 0g Fn V
65a1i 11 . . . . . 6 (𝜑 → 0g Fn V)
7 dffn5 6886 . . . . . 6 (0g Fn V ↔ 0g = (𝑥 ∈ V ↦ (0g𝑥)))
86, 7sylib 218 . . . . 5 (𝜑 → 0g = (𝑥 ∈ V ↦ (0g𝑥)))
9 fveq2 6828 . . . . 5 (𝑥 = (𝑅𝑦) → (0g𝑥) = (0g‘(𝑅𝑦)))
102, 4, 8, 9fmptco 7068 . . . 4 (𝜑 → (0g𝑅) = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
111, 10eqtrid 2780 . . 3 (𝜑0 = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
123ffvelcdmda 7023 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
13 eqid 2733 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
14 eqid 2733 . . . . . . 7 (0g‘(𝑅𝑦)) = (0g‘(𝑅𝑦))
1513, 14mndidcl 18659 . . . . . 6 ((𝑅𝑦) ∈ Mnd → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1612, 15syl 17 . . . . 5 ((𝜑𝑦𝐼) → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1716ralrimiva 3125 . . . 4 (𝜑 → ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
18 prdsplusgcl.y . . . . 5 𝑌 = (𝑆Xs𝑅)
19 prdsplusgcl.b . . . . 5 𝐵 = (Base‘𝑌)
20 prdsplusgcl.s . . . . 5 (𝜑𝑆𝑉)
21 prdsplusgcl.i . . . . 5 (𝜑𝐼𝑊)
223ffnd 6657 . . . . 5 (𝜑𝑅 Fn 𝐼)
2318, 19, 20, 21, 22prdsbasmpt 17376 . . . 4 (𝜑 → ((𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦))))
2417, 23mpbird 257 . . 3 (𝜑 → (𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵)
2511, 24eqeltrd 2833 . 2 (𝜑0𝐵)
261fveq1i 6829 . . . . . . . . . 10 ( 0𝑦) = ((0g𝑅)‘𝑦)
27 fvco2 6925 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2822, 27sylan 580 . . . . . . . . . 10 ((𝜑𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2926, 28eqtrid 2780 . . . . . . . . 9 ((𝜑𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3029adantlr 715 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3130oveq1d 7367 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)))
323adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅:𝐼⟶Mnd)
3332ffvelcdmda 7023 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
3420ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑆𝑉)
3521ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝐼𝑊)
3622ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
37 simplr 768 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑥𝐵)
38 simpr 484 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
3918, 19, 34, 35, 36, 37, 38prdsbasprj 17378 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑥𝑦) ∈ (Base‘(𝑅𝑦)))
40 eqid 2733 . . . . . . . . 9 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
4113, 40, 14mndlid 18664 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4233, 39, 41syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4331, 42eqtrd 2768 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4443mpteq2dva 5186 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
4520adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑆𝑉)
4621adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝐼𝑊)
4722adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
4825adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 0𝐵)
49 simpr 484 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐵)
50 prdsplusgcl.p . . . . . 6 + = (+g𝑌)
5118, 19, 45, 46, 47, 48, 49, 50prdsplusgval 17379 . . . . 5 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))))
5218, 19, 45, 46, 47, 49prdsbasfn 17377 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥 Fn 𝐼)
53 dffn5 6886 . . . . . 6 (𝑥 Fn 𝐼𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5452, 53sylib 218 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5544, 51, 543eqtr4d 2778 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
5630oveq2d 7368 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))))
5713, 40, 14mndrid 18665 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5833, 39, 57syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5956, 58eqtrd 2768 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = (𝑥𝑦))
6059mpteq2dva 5186 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
6118, 19, 45, 46, 47, 49, 48, 50prdsplusgval 17379 . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))))
6260, 61, 543eqtr4d 2778 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
6355, 62jca 511 . . 3 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6463ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6525, 64jca 511 1 (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cmpt 5174  ccom 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Xscprds 17351  Mndcmnd 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-prds 17353  df-mgm 18550  df-sgrp 18629  df-mnd 18645
This theorem is referenced by:  prdsmndd  18680  prds0g  18681
  Copyright terms: Public domain W3C validator