MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmbas Structured version   Visualization version   GIF version

Theorem frlmbas 21798
Description: Base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmbas.n 𝑁 = (Base‘𝑅)
frlmbas.z 0 = (0g𝑅)
frlmbas.b 𝐵 = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 }
Assertion
Ref Expression
frlmbas ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘𝐹))
Distinct variable groups:   𝑘,𝑁   𝑅,𝑘   𝑘,𝐼   𝑘,𝑊   𝑘,𝑉   0 ,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem frlmbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . . 5 (ringLMod‘𝑅) ∈ V
2 fnconstg 6809 . . . . 5 ((ringLMod‘𝑅) ∈ V → (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼)
31, 2ax-mp 5 . . . 4 (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼
4 eqid 2740 . . . . 5 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
5 eqid 2740 . . . . 5 {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin}
64, 5dsmmbas2 21780 . . . 4 (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼𝐼𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
73, 6mpan 689 . . 3 (𝐼𝑊 → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
87adantl 481 . 2 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
9 frlmbas.b . . 3 𝐵 = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 }
10 fvco2 7019 . . . . . . . . . . . . 13 (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
113, 10mpan 689 . . . . . . . . . . . 12 (𝑥𝐼 → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
1211adantl 481 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
131fvconst2 7241 . . . . . . . . . . . . . 14 (𝑥𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅))
1413adantl 481 . . . . . . . . . . . . 13 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅))
1514fveq2d 6924 . . . . . . . . . . . 12 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = (0g‘(ringLMod‘𝑅)))
16 frlmbas.z . . . . . . . . . . . . 13 0 = (0g𝑅)
17 rlm0 21225 . . . . . . . . . . . . 13 (0g𝑅) = (0g‘(ringLMod‘𝑅))
1816, 17eqtri 2768 . . . . . . . . . . . 12 0 = (0g‘(ringLMod‘𝑅))
1915, 18eqtr4di 2798 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = 0 )
2012, 19eqtrd 2780 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = 0 )
2120neeq2d 3007 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) ↔ (𝑘𝑥) ≠ 0 ))
2221rabbidva 3450 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)} = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
23 elmapfn 8923 . . . . . . . . . 10 (𝑘 ∈ (𝑁m 𝐼) → 𝑘 Fn 𝐼)
2423adantl 481 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 𝑘 Fn 𝐼)
25 fn0g 18701 . . . . . . . . . 10 0g Fn V
26 ssv 4033 . . . . . . . . . 10 ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V
27 fnco 6697 . . . . . . . . . 10 ((0g Fn V ∧ (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V) → (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼)
2825, 3, 26, 27mp3an 1461 . . . . . . . . 9 (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼
29 fndmdif 7075 . . . . . . . . 9 ((𝑘 Fn 𝐼 ∧ (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)})
3024, 28, 29sylancl 585 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)})
31 simplr 768 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 𝐼𝑊)
3216fvexi 6934 . . . . . . . . . 10 0 ∈ V
3332a1i 11 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 0 ∈ V)
34 suppvalfn 8209 . . . . . . . . 9 ((𝑘 Fn 𝐼𝐼𝑊0 ∈ V) → (𝑘 supp 0 ) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
3524, 31, 33, 34syl3anc 1371 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (𝑘 supp 0 ) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
3622, 30, 353eqtr4d 2790 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = (𝑘 supp 0 ))
3736eleq1d 2829 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ (𝑘 supp 0 ) ∈ Fin))
38 elmapfun 8924 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → Fun 𝑘)
39 id 22 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → 𝑘 ∈ (𝑁m 𝐼))
4032a1i 11 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → 0 ∈ V)
4138, 39, 403jca 1128 . . . . . . . 8 (𝑘 ∈ (𝑁m 𝐼) → (Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V))
4241adantl 481 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V))
43 funisfsupp 9437 . . . . . . 7 ((Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈ Fin))
4537, 44bitr4d 282 . . . . 5 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ 𝑘 finSupp 0 ))
4645rabbidva 3450 . . . 4 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 })
47 eqid 2740 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
48 frlmbas.n . . . . . . . . . 10 𝑁 = (Base‘𝑅)
49 rlmbas 21223 . . . . . . . . . 10 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
5048, 49eqtri 2768 . . . . . . . . 9 𝑁 = (Base‘(ringLMod‘𝑅))
5147, 50pwsbas 17547 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
521, 51mpan 689 . . . . . . 7 (𝐼𝑊 → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
5352adantl 481 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
54 eqid 2740 . . . . . . . . . . 11 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
5547, 54pwsval 17546 . . . . . . . . . 10 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
561, 55mpan 689 . . . . . . . . 9 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
5756adantl 481 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
58 rlmsca 21228 . . . . . . . . . 10 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
5958adantr 480 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
6059oveq1d 7463 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
6157, 60eqtr4d 2783 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
6261fveq2d 6924 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
6353, 62eqtrd 2780 . . . . 5 ((𝑅𝑉𝐼𝑊) → (𝑁m 𝐼) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
6463rabeqdv 3459 . . . 4 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
6546, 64eqtr3d 2782 . . 3 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 } = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
669, 65eqtrid 2792 . 2 ((𝑅𝑉𝐼𝑊) → 𝐵 = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
67 frlmval.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
6867frlmval 21791 . . 3 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
6968fveq2d 6924 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
708, 66, 693eqtr4d 2790 1 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  ccom 5704  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  Scalarcsca 17314  0gc0g 17499  Xscprds 17505  s cpws 17506  ringLModcrglmod 21194  m cdsmm 21774   freeLMod cfrlm 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790
This theorem is referenced by:  frlmelbas  21799  frlmfibas  21805  ellspd  21845  islindf4  21881  rrxbase  25441  rrxds  25446  prjcrv0  42588  frlmpwfi  43055
  Copyright terms: Public domain W3C validator