Step | Hyp | Ref
| Expression |
1 | | fvex 6664 |
. . . . 5
⊢
(ringLMod‘𝑅)
∈ V |
2 | | fnconstg 6545 |
. . . . 5
⊢
((ringLMod‘𝑅)
∈ V → (𝐼 ×
{(ringLMod‘𝑅)}) Fn
𝐼) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 |
4 | | eqid 2759 |
. . . . 5
⊢ (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) |
5 | | eqid 2759 |
. . . . 5
⊢ {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈
Fin} |
6 | 4, 5 | dsmmbas2 20487 |
. . . 4
⊢ (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ 𝐼 ∈ 𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} =
(Base‘(𝑅
⊕m (𝐼
× {(ringLMod‘𝑅)})))) |
7 | 3, 6 | mpan 690 |
. . 3
⊢ (𝐼 ∈ 𝑊 → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} =
(Base‘(𝑅
⊕m (𝐼
× {(ringLMod‘𝑅)})))) |
8 | 7 | adantl 486 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} =
(Base‘(𝑅
⊕m (𝐼
× {(ringLMod‘𝑅)})))) |
9 | | frlmbas.b |
. . 3
⊢ 𝐵 = {𝑘 ∈ (𝑁 ↑m 𝐼) ∣ 𝑘 finSupp 0 } |
10 | | fvco2 6742 |
. . . . . . . . . . . . 13
⊢ (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ 𝑥 ∈ 𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥))) |
11 | 3, 10 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐼 → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥))) |
12 | 11 | adantl 486 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥))) |
13 | 1 | fvconst2 6950 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅)) |
14 | 13 | adantl 486 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅)) |
15 | 14 | fveq2d 6655 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) =
(0g‘(ringLMod‘𝑅))) |
16 | | frlmbas.z |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑅) |
17 | | rlm0 20022 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑅) =
(0g‘(ringLMod‘𝑅)) |
18 | 16, 17 | eqtri 2782 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘(ringLMod‘𝑅)) |
19 | 15, 18 | eqtr4di 2812 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = 0 ) |
20 | 12, 19 | eqtrd 2794 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = 0 ) |
21 | 20 | neeq2d 3009 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((𝑘‘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) ↔ (𝑘‘𝑥) ≠ 0 )) |
22 | 21 | rabbidva 3388 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → {𝑥 ∈ 𝐼 ∣ (𝑘‘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)} = {𝑥 ∈ 𝐼 ∣ (𝑘‘𝑥) ≠ 0 }) |
23 | | elmapfn 8440 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑁 ↑m 𝐼) → 𝑘 Fn 𝐼) |
24 | 23 | adantl 486 |
. . . . . . . . 9
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → 𝑘 Fn 𝐼) |
25 | | fn0g 17924 |
. . . . . . . . . 10
⊢
0g Fn V |
26 | | ssv 3912 |
. . . . . . . . . 10
⊢ ran
(𝐼 ×
{(ringLMod‘𝑅)})
⊆ V |
27 | | fnco 6441 |
. . . . . . . . . 10
⊢
((0g Fn V ∧ (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V) → (0g ∘
(𝐼 ×
{(ringLMod‘𝑅)})) Fn
𝐼) |
28 | 25, 3, 26, 27 | mp3an 1459 |
. . . . . . . . 9
⊢
(0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼 |
29 | | fndmdif 6796 |
. . . . . . . . 9
⊢ ((𝑘 Fn 𝐼 ∧ (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥 ∈ 𝐼 ∣ (𝑘‘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)}) |
30 | 24, 28, 29 | sylancl 590 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥 ∈ 𝐼 ∣ (𝑘‘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)}) |
31 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → 𝐼 ∈ 𝑊) |
32 | 16 | fvexi 6665 |
. . . . . . . . . 10
⊢ 0 ∈
V |
33 | 32 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → 0 ∈ V) |
34 | | suppvalfn 7836 |
. . . . . . . . 9
⊢ ((𝑘 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ∧ 0 ∈ V) → (𝑘 supp 0 ) = {𝑥 ∈ 𝐼 ∣ (𝑘‘𝑥) ≠ 0 }) |
35 | 24, 31, 33, 34 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → (𝑘 supp 0 ) = {𝑥 ∈ 𝐼 ∣ (𝑘‘𝑥) ≠ 0 }) |
36 | 22, 30, 35 | 3eqtr4d 2804 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = (𝑘 supp 0 )) |
37 | 36 | eleq1d 2835 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ (𝑘 supp 0 ) ∈
Fin)) |
38 | | elmapfun 8441 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑁 ↑m 𝐼) → Fun 𝑘) |
39 | | id 22 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑁 ↑m 𝐼) → 𝑘 ∈ (𝑁 ↑m 𝐼)) |
40 | 32 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑁 ↑m 𝐼) → 0 ∈ V) |
41 | 38, 39, 40 | 3jca 1126 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑁 ↑m 𝐼) → (Fun 𝑘 ∧ 𝑘 ∈ (𝑁 ↑m 𝐼) ∧ 0 ∈
V)) |
42 | 41 | adantl 486 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → (Fun 𝑘 ∧ 𝑘 ∈ (𝑁 ↑m 𝐼) ∧ 0 ∈
V)) |
43 | | funisfsupp 8856 |
. . . . . . 7
⊢ ((Fun
𝑘 ∧ 𝑘 ∈ (𝑁 ↑m 𝐼) ∧ 0 ∈ V) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈
Fin)) |
44 | 42, 43 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈
Fin)) |
45 | 37, 44 | bitr4d 285 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑘 ∈ (𝑁 ↑m 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ 𝑘 finSupp 0 )) |
46 | 45 | rabbidva 3388 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑘 ∈ (𝑁 ↑m 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (𝑁 ↑m 𝐼) ∣ 𝑘 finSupp 0 }) |
47 | | eqid 2759 |
. . . . . . . . 9
⊢
((ringLMod‘𝑅)
↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) |
48 | | frlmbas.n |
. . . . . . . . . 10
⊢ 𝑁 = (Base‘𝑅) |
49 | | rlmbas 20020 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘(ringLMod‘𝑅)) |
50 | 48, 49 | eqtri 2782 |
. . . . . . . . 9
⊢ 𝑁 =
(Base‘(ringLMod‘𝑅)) |
51 | 47, 50 | pwsbas 16803 |
. . . . . . . 8
⊢
(((ringLMod‘𝑅)
∈ V ∧ 𝐼 ∈
𝑊) → (𝑁 ↑m 𝐼) =
(Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
52 | 1, 51 | mpan 690 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑊 → (𝑁 ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s
𝐼))) |
53 | 52 | adantl 486 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑁 ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s
𝐼))) |
54 | | eqid 2759 |
. . . . . . . . . . 11
⊢
(Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) |
55 | 47, 54 | pwsval 16802 |
. . . . . . . . . 10
⊢
(((ringLMod‘𝑅)
∈ V ∧ 𝐼 ∈
𝑊) →
((ringLMod‘𝑅)
↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
56 | 1, 55 | mpan 690 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) =
((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
57 | 56 | adantl 486 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) =
((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
58 | | rlmsca 20025 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
59 | 58 | adantr 485 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
60 | 59 | oveq1d 7158 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
61 | 57, 60 | eqtr4d 2797 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) |
62 | 61 | fveq2d 6655 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((ringLMod‘𝑅) ↑s
𝐼)) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))) |
63 | 53, 62 | eqtrd 2794 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑁 ↑m 𝐼) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))) |
64 | 63 | rabeqdv 3395 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑘 ∈ (𝑁 ↑m 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈
Fin}) |
65 | 46, 64 | eqtr3d 2796 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑘 ∈ (𝑁 ↑m 𝐼) ∣ 𝑘 finSupp 0 } = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈
Fin}) |
66 | 9, 65 | syl5eq 2806 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐵 = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈
Fin}) |
67 | | frlmval.f |
. . . 4
⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
68 | 67 | frlmval 20498 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
69 | 68 | fveq2d 6655 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝐹) = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) |
70 | 8, 66, 69 | 3eqtr4d 2804 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐵 = (Base‘𝐹)) |