MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmbas Structured version   Visualization version   GIF version

Theorem frlmbas 21692
Description: Base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmbas.n 𝑁 = (Base‘𝑅)
frlmbas.z 0 = (0g𝑅)
frlmbas.b 𝐵 = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 }
Assertion
Ref Expression
frlmbas ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘𝐹))
Distinct variable groups:   𝑘,𝑁   𝑅,𝑘   𝑘,𝐼   𝑘,𝑊   𝑘,𝑉   0 ,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem frlmbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . . . 5 (ringLMod‘𝑅) ∈ V
2 fnconstg 6711 . . . . 5 ((ringLMod‘𝑅) ∈ V → (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼)
31, 2ax-mp 5 . . . 4 (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼
4 eqid 2731 . . . . 5 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
5 eqid 2731 . . . . 5 {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin}
64, 5dsmmbas2 21674 . . . 4 (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼𝐼𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
73, 6mpan 690 . . 3 (𝐼𝑊 → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
87adantl 481 . 2 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
9 frlmbas.b . . 3 𝐵 = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 }
10 fvco2 6919 . . . . . . . . . . . . 13 (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
113, 10mpan 690 . . . . . . . . . . . 12 (𝑥𝐼 → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
1211adantl 481 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
131fvconst2 7138 . . . . . . . . . . . . . 14 (𝑥𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅))
1413adantl 481 . . . . . . . . . . . . 13 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅))
1514fveq2d 6826 . . . . . . . . . . . 12 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = (0g‘(ringLMod‘𝑅)))
16 frlmbas.z . . . . . . . . . . . . 13 0 = (0g𝑅)
17 rlm0 21129 . . . . . . . . . . . . 13 (0g𝑅) = (0g‘(ringLMod‘𝑅))
1816, 17eqtri 2754 . . . . . . . . . . . 12 0 = (0g‘(ringLMod‘𝑅))
1915, 18eqtr4di 2784 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = 0 )
2012, 19eqtrd 2766 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = 0 )
2120neeq2d 2988 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) ↔ (𝑘𝑥) ≠ 0 ))
2221rabbidva 3401 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)} = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
23 elmapfn 8789 . . . . . . . . . 10 (𝑘 ∈ (𝑁m 𝐼) → 𝑘 Fn 𝐼)
2423adantl 481 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 𝑘 Fn 𝐼)
25 fn0g 18571 . . . . . . . . . 10 0g Fn V
26 ssv 3954 . . . . . . . . . 10 ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V
27 fnco 6599 . . . . . . . . . 10 ((0g Fn V ∧ (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V) → (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼)
2825, 3, 26, 27mp3an 1463 . . . . . . . . 9 (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼
29 fndmdif 6975 . . . . . . . . 9 ((𝑘 Fn 𝐼 ∧ (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)})
3024, 28, 29sylancl 586 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)})
31 simplr 768 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 𝐼𝑊)
3216fvexi 6836 . . . . . . . . . 10 0 ∈ V
3332a1i 11 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 0 ∈ V)
34 suppvalfn 8098 . . . . . . . . 9 ((𝑘 Fn 𝐼𝐼𝑊0 ∈ V) → (𝑘 supp 0 ) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
3524, 31, 33, 34syl3anc 1373 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (𝑘 supp 0 ) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
3622, 30, 353eqtr4d 2776 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = (𝑘 supp 0 ))
3736eleq1d 2816 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ (𝑘 supp 0 ) ∈ Fin))
38 elmapfun 8790 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → Fun 𝑘)
39 id 22 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → 𝑘 ∈ (𝑁m 𝐼))
4032a1i 11 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → 0 ∈ V)
4138, 39, 403jca 1128 . . . . . . . 8 (𝑘 ∈ (𝑁m 𝐼) → (Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V))
4241adantl 481 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V))
43 funisfsupp 9251 . . . . . . 7 ((Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈ Fin))
4537, 44bitr4d 282 . . . . 5 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ 𝑘 finSupp 0 ))
4645rabbidva 3401 . . . 4 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 })
47 eqid 2731 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
48 frlmbas.n . . . . . . . . . 10 𝑁 = (Base‘𝑅)
49 rlmbas 21127 . . . . . . . . . 10 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
5048, 49eqtri 2754 . . . . . . . . 9 𝑁 = (Base‘(ringLMod‘𝑅))
5147, 50pwsbas 17391 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
521, 51mpan 690 . . . . . . 7 (𝐼𝑊 → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
5352adantl 481 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
54 eqid 2731 . . . . . . . . . . 11 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
5547, 54pwsval 17390 . . . . . . . . . 10 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
561, 55mpan 690 . . . . . . . . 9 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
5756adantl 481 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
58 rlmsca 21132 . . . . . . . . . 10 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
5958adantr 480 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
6059oveq1d 7361 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
6157, 60eqtr4d 2769 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
6261fveq2d 6826 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
6353, 62eqtrd 2766 . . . . 5 ((𝑅𝑉𝐼𝑊) → (𝑁m 𝐼) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
6463rabeqdv 3410 . . . 4 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
6546, 64eqtr3d 2768 . . 3 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 } = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
669, 65eqtrid 2778 . 2 ((𝑅𝑉𝐼𝑊) → 𝐵 = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
67 frlmval.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
6867frlmval 21685 . . 3 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
6968fveq2d 6826 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
708, 66, 693eqtr4d 2776 1 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  {csn 4573   class class class wbr 5089   × cxp 5612  dom cdm 5614  ran crn 5615  ccom 5618  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17120  Scalarcsca 17164  0gc0g 17343  Xscprds 17349  s cpws 17350  ringLModcrglmod 21106  m cdsmm 21668   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  frlmelbas  21693  frlmfibas  21699  ellspd  21739  islindf4  21775  rrxbase  25315  rrxds  25320  prjcrv0  42736  frlmpwfi  43201
  Copyright terms: Public domain W3C validator