MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmbas Structured version   Visualization version   GIF version

Theorem frlmbas 21793
Description: Base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmbas.n 𝑁 = (Base‘𝑅)
frlmbas.z 0 = (0g𝑅)
frlmbas.b 𝐵 = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 }
Assertion
Ref Expression
frlmbas ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘𝐹))
Distinct variable groups:   𝑘,𝑁   𝑅,𝑘   𝑘,𝐼   𝑘,𝑊   𝑘,𝑉   0 ,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem frlmbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6920 . . . . 5 (ringLMod‘𝑅) ∈ V
2 fnconstg 6797 . . . . 5 ((ringLMod‘𝑅) ∈ V → (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼)
31, 2ax-mp 5 . . . 4 (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼
4 eqid 2735 . . . . 5 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
5 eqid 2735 . . . . 5 {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin}
64, 5dsmmbas2 21775 . . . 4 (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼𝐼𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
73, 6mpan 690 . . 3 (𝐼𝑊 → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
87adantl 481 . 2 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
9 frlmbas.b . . 3 𝐵 = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 }
10 fvco2 7006 . . . . . . . . . . . . 13 (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
113, 10mpan 690 . . . . . . . . . . . 12 (𝑥𝐼 → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
1211adantl 481 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
131fvconst2 7224 . . . . . . . . . . . . . 14 (𝑥𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅))
1413adantl 481 . . . . . . . . . . . . 13 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅))
1514fveq2d 6911 . . . . . . . . . . . 12 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = (0g‘(ringLMod‘𝑅)))
16 frlmbas.z . . . . . . . . . . . . 13 0 = (0g𝑅)
17 rlm0 21220 . . . . . . . . . . . . 13 (0g𝑅) = (0g‘(ringLMod‘𝑅))
1816, 17eqtri 2763 . . . . . . . . . . . 12 0 = (0g‘(ringLMod‘𝑅))
1915, 18eqtr4di 2793 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = 0 )
2012, 19eqtrd 2775 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = 0 )
2120neeq2d 2999 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) ∧ 𝑥𝐼) → ((𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) ↔ (𝑘𝑥) ≠ 0 ))
2221rabbidva 3440 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)} = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
23 elmapfn 8904 . . . . . . . . . 10 (𝑘 ∈ (𝑁m 𝐼) → 𝑘 Fn 𝐼)
2423adantl 481 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 𝑘 Fn 𝐼)
25 fn0g 18689 . . . . . . . . . 10 0g Fn V
26 ssv 4020 . . . . . . . . . 10 ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V
27 fnco 6687 . . . . . . . . . 10 ((0g Fn V ∧ (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V) → (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼)
2825, 3, 26, 27mp3an 1460 . . . . . . . . 9 (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼
29 fndmdif 7062 . . . . . . . . 9 ((𝑘 Fn 𝐼 ∧ (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)})
3024, 28, 29sylancl 586 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)})
31 simplr 769 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 𝐼𝑊)
3216fvexi 6921 . . . . . . . . . 10 0 ∈ V
3332a1i 11 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → 0 ∈ V)
34 suppvalfn 8192 . . . . . . . . 9 ((𝑘 Fn 𝐼𝐼𝑊0 ∈ V) → (𝑘 supp 0 ) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
3524, 31, 33, 34syl3anc 1370 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (𝑘 supp 0 ) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
3622, 30, 353eqtr4d 2785 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = (𝑘 supp 0 ))
3736eleq1d 2824 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ (𝑘 supp 0 ) ∈ Fin))
38 elmapfun 8905 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → Fun 𝑘)
39 id 22 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → 𝑘 ∈ (𝑁m 𝐼))
4032a1i 11 . . . . . . . . 9 (𝑘 ∈ (𝑁m 𝐼) → 0 ∈ V)
4138, 39, 403jca 1127 . . . . . . . 8 (𝑘 ∈ (𝑁m 𝐼) → (Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V))
4241adantl 481 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V))
43 funisfsupp 9405 . . . . . . 7 ((Fun 𝑘𝑘 ∈ (𝑁m 𝐼) ∧ 0 ∈ V) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈ Fin))
4537, 44bitr4d 282 . . . . 5 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁m 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ 𝑘 finSupp 0 ))
4645rabbidva 3440 . . . 4 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 })
47 eqid 2735 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
48 frlmbas.n . . . . . . . . . 10 𝑁 = (Base‘𝑅)
49 rlmbas 21218 . . . . . . . . . 10 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
5048, 49eqtri 2763 . . . . . . . . 9 𝑁 = (Base‘(ringLMod‘𝑅))
5147, 50pwsbas 17534 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
521, 51mpan 690 . . . . . . 7 (𝐼𝑊 → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
5352adantl 481 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑁m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
54 eqid 2735 . . . . . . . . . . 11 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
5547, 54pwsval 17533 . . . . . . . . . 10 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
561, 55mpan 690 . . . . . . . . 9 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
5756adantl 481 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
58 rlmsca 21223 . . . . . . . . . 10 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
5958adantr 480 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
6059oveq1d 7446 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
6157, 60eqtr4d 2778 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
6261fveq2d 6911 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
6353, 62eqtrd 2775 . . . . 5 ((𝑅𝑉𝐼𝑊) → (𝑁m 𝐼) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
6463rabeqdv 3449 . . . 4 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
6546, 64eqtr3d 2777 . . 3 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁m 𝐼) ∣ 𝑘 finSupp 0 } = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
669, 65eqtrid 2787 . 2 ((𝑅𝑉𝐼𝑊) → 𝐵 = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
67 frlmval.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
6867frlmval 21786 . . 3 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
6968fveq2d 6911 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
708, 66, 693eqtr4d 2785 1 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  cdif 3960  wss 3963  {csn 4631   class class class wbr 5148   × cxp 5687  dom cdm 5689  ran crn 5690  ccom 5693  Fun wfun 6557   Fn wfn 6558  cfv 6563  (class class class)co 7431   supp csupp 8184  m cmap 8865  Fincfn 8984   finSupp cfsupp 9399  Basecbs 17245  Scalarcsca 17301  0gc0g 17486  Xscprds 17492  s cpws 17493  ringLModcrglmod 21189  m cdsmm 21769   freeLMod cfrlm 21784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785
This theorem is referenced by:  frlmelbas  21794  frlmfibas  21800  ellspd  21840  islindf4  21876  rrxbase  25436  rrxds  25441  prjcrv0  42620  frlmpwfi  43087
  Copyright terms: Public domain W3C validator