MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmbas Structured version   Visualization version   GIF version

Theorem frlmbas 20421
Description: Base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmbas.n 𝑁 = (Base‘𝑅)
frlmbas.z 0 = (0g𝑅)
frlmbas.b 𝐵 = {𝑘 ∈ (𝑁𝑚 𝐼) ∣ 𝑘 finSupp 0 }
Assertion
Ref Expression
frlmbas ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘𝐹))
Distinct variable groups:   𝑘,𝑁   𝑅,𝑘   𝑘,𝐼   𝑘,𝑊   𝑘,𝑉   0 ,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem frlmbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6422 . . . . 5 (ringLMod‘𝑅) ∈ V
2 fnconstg 6306 . . . . 5 ((ringLMod‘𝑅) ∈ V → (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼)
31, 2ax-mp 5 . . . 4 (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼
4 eqid 2797 . . . . 5 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
5 eqid 2797 . . . . 5 {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin}
64, 5dsmmbas2 20403 . . . 4 (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼𝐼𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
73, 6mpan 682 . . 3 (𝐼𝑊 → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
87adantl 474 . 2 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
9 frlmbas.b . . 3 𝐵 = {𝑘 ∈ (𝑁𝑚 𝐼) ∣ 𝑘 finSupp 0 }
10 fvco2 6496 . . . . . . . . . . . . 13 (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
113, 10mpan 682 . . . . . . . . . . . 12 (𝑥𝐼 → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
1211adantl 474 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) ∧ 𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)))
131fvconst2 6696 . . . . . . . . . . . . . 14 (𝑥𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅))
1413adantl 474 . . . . . . . . . . . . 13 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) ∧ 𝑥𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑥) = (ringLMod‘𝑅))
1514fveq2d 6413 . . . . . . . . . . . 12 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) ∧ 𝑥𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = (0g‘(ringLMod‘𝑅)))
16 frlmbas.z . . . . . . . . . . . . 13 0 = (0g𝑅)
17 rlm0 19517 . . . . . . . . . . . . 13 (0g𝑅) = (0g‘(ringLMod‘𝑅))
1816, 17eqtri 2819 . . . . . . . . . . . 12 0 = (0g‘(ringLMod‘𝑅))
1915, 18syl6eqr 2849 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) ∧ 𝑥𝐼) → (0g‘((𝐼 × {(ringLMod‘𝑅)})‘𝑥)) = 0 )
2012, 19eqtrd 2831 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) ∧ 𝑥𝐼) → ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) = 0 )
2120neeq2d 3029 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) ∧ 𝑥𝐼) → ((𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥) ↔ (𝑘𝑥) ≠ 0 ))
2221rabbidva 3370 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)} = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
23 elmapfn 8116 . . . . . . . . . 10 (𝑘 ∈ (𝑁𝑚 𝐼) → 𝑘 Fn 𝐼)
2423adantl 474 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → 𝑘 Fn 𝐼)
25 fn0g 17574 . . . . . . . . . 10 0g Fn V
26 ssv 3819 . . . . . . . . . 10 ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V
27 fnco 6208 . . . . . . . . . 10 ((0g Fn V ∧ (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ ran (𝐼 × {(ringLMod‘𝑅)}) ⊆ V) → (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼)
2825, 3, 26, 27mp3an 1586 . . . . . . . . 9 (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼
29 fndmdif 6545 . . . . . . . . 9 ((𝑘 Fn 𝐼 ∧ (0g ∘ (𝐼 × {(ringLMod‘𝑅)})) Fn 𝐼) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)})
3024, 28, 29sylancl 581 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ ((0g ∘ (𝐼 × {(ringLMod‘𝑅)}))‘𝑥)})
31 simplr 786 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → 𝐼𝑊)
3216fvexi 6423 . . . . . . . . . 10 0 ∈ V
3332a1i 11 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → 0 ∈ V)
34 suppvalfn 7537 . . . . . . . . 9 ((𝑘 Fn 𝐼𝐼𝑊0 ∈ V) → (𝑘 supp 0 ) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
3524, 31, 33, 34syl3anc 1491 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → (𝑘 supp 0 ) = {𝑥𝐼 ∣ (𝑘𝑥) ≠ 0 })
3622, 30, 353eqtr4d 2841 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) = (𝑘 supp 0 ))
3736eleq1d 2861 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ (𝑘 supp 0 ) ∈ Fin))
38 elmapfun 8117 . . . . . . . . 9 (𝑘 ∈ (𝑁𝑚 𝐼) → Fun 𝑘)
39 id 22 . . . . . . . . 9 (𝑘 ∈ (𝑁𝑚 𝐼) → 𝑘 ∈ (𝑁𝑚 𝐼))
4032a1i 11 . . . . . . . . 9 (𝑘 ∈ (𝑁𝑚 𝐼) → 0 ∈ V)
4138, 39, 403jca 1159 . . . . . . . 8 (𝑘 ∈ (𝑁𝑚 𝐼) → (Fun 𝑘𝑘 ∈ (𝑁𝑚 𝐼) ∧ 0 ∈ V))
4241adantl 474 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → (Fun 𝑘𝑘 ∈ (𝑁𝑚 𝐼) ∧ 0 ∈ V))
43 funisfsupp 8520 . . . . . . 7 ((Fun 𝑘𝑘 ∈ (𝑁𝑚 𝐼) ∧ 0 ∈ V) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈ Fin))
4442, 43syl 17 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → (𝑘 finSupp 0 ↔ (𝑘 supp 0 ) ∈ Fin))
4537, 44bitr4d 274 . . . . 5 (((𝑅𝑉𝐼𝑊) ∧ 𝑘 ∈ (𝑁𝑚 𝐼)) → (dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin ↔ 𝑘 finSupp 0 ))
4645rabbidva 3370 . . . 4 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁𝑚 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (𝑁𝑚 𝐼) ∣ 𝑘 finSupp 0 })
47 eqid 2797 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
48 frlmbas.n . . . . . . . . . 10 𝑁 = (Base‘𝑅)
49 rlmbas 19515 . . . . . . . . . 10 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
5048, 49eqtri 2819 . . . . . . . . 9 𝑁 = (Base‘(ringLMod‘𝑅))
5147, 50pwsbas 16459 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → (𝑁𝑚 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
521, 51mpan 682 . . . . . . 7 (𝐼𝑊 → (𝑁𝑚 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
5352adantl 474 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑁𝑚 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
54 eqid 2797 . . . . . . . . . . 11 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
5547, 54pwsval 16458 . . . . . . . . . 10 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
561, 55mpan 682 . . . . . . . . 9 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
5756adantl 474 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
58 rlmsca 19520 . . . . . . . . . 10 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
5958adantr 473 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
6059oveq1d 6891 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
6157, 60eqtr4d 2834 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
6261fveq2d 6413 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
6353, 62eqtrd 2831 . . . . 5 ((𝑅𝑉𝐼𝑊) → (𝑁𝑚 𝐼) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
64 rabeq 3374 . . . . 5 ((𝑁𝑚 𝐼) = (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) → {𝑘 ∈ (𝑁𝑚 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
6563, 64syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁𝑚 𝐼) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin} = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
6646, 65eqtr3d 2833 . . 3 ((𝑅𝑉𝐼𝑊) → {𝑘 ∈ (𝑁𝑚 𝐼) ∣ 𝑘 finSupp 0 } = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
679, 66syl5eq 2843 . 2 ((𝑅𝑉𝐼𝑊) → 𝐵 = {𝑘 ∈ (Base‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) ∣ dom (𝑘 ∖ (0g ∘ (𝐼 × {(ringLMod‘𝑅)}))) ∈ Fin})
68 frlmval.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
6968frlmval 20414 . . 3 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
7069fveq2d 6413 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
718, 67, 703eqtr4d 2841 1 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2969  {crab 3091  Vcvv 3383  cdif 3764  wss 3767  {csn 4366   class class class wbr 4841   × cxp 5308  dom cdm 5310  ran crn 5311  ccom 5314  Fun wfun 6093   Fn wfn 6094  cfv 6099  (class class class)co 6876   supp csupp 7530  𝑚 cmap 8093  Fincfn 8193   finSupp cfsupp 8515  Basecbs 16181  Scalarcsca 16267  0gc0g 16412  Xscprds 16418  s cpws 16419  ringLModcrglmod 19489  m cdsmm 20397   freeLMod cfrlm 20412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-sup 8588  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-hom 16288  df-cco 16289  df-0g 16414  df-prds 16420  df-pws 16422  df-sra 19492  df-rgmod 19493  df-dsmm 20398  df-frlm 20413
This theorem is referenced by:  frlmelbas  20422  frlmfibas  20427  ellspd  20463  islindf4  20499  rrxbase  23511  rrxds  23516  frlmpwfi  38441
  Copyright terms: Public domain W3C validator