Step | Hyp | Ref
| Expression |
1 | | fvex 6903 |
. . . . 5
β’
(ringLModβπ
)
β V |
2 | | fnconstg 6778 |
. . . . 5
β’
((ringLModβπ
)
β V β (πΌ Γ
{(ringLModβπ
)}) Fn
πΌ) |
3 | 1, 2 | ax-mp 5 |
. . . 4
β’ (πΌ Γ {(ringLModβπ
)}) Fn πΌ |
4 | | eqid 2730 |
. . . . 5
β’ (π
Xs(πΌ Γ {(ringLModβπ
)})) = (π
Xs(πΌ Γ {(ringLModβπ
)})) |
5 | | eqid 2730 |
. . . . 5
β’ {π β (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)}))) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β Fin} = {π β (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)}))) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β
Fin} |
6 | 4, 5 | dsmmbas2 21511 |
. . . 4
β’ (((πΌ Γ {(ringLModβπ
)}) Fn πΌ β§ πΌ β π) β {π β (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)}))) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β Fin} =
(Baseβ(π
βm (πΌ
Γ {(ringLModβπ
)})))) |
7 | 3, 6 | mpan 686 |
. . 3
β’ (πΌ β π β {π β (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)}))) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β Fin} =
(Baseβ(π
βm (πΌ
Γ {(ringLModβπ
)})))) |
8 | 7 | adantl 480 |
. 2
β’ ((π
β π β§ πΌ β π) β {π β (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)}))) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β Fin} =
(Baseβ(π
βm (πΌ
Γ {(ringLModβπ
)})))) |
9 | | frlmbas.b |
. . 3
β’ π΅ = {π β (π βm πΌ) β£ π finSupp 0 } |
10 | | fvco2 6987 |
. . . . . . . . . . . . 13
β’ (((πΌ Γ {(ringLModβπ
)}) Fn πΌ β§ π₯ β πΌ) β ((0g β (πΌ Γ {(ringLModβπ
)}))βπ₯) = (0gβ((πΌ Γ {(ringLModβπ
)})βπ₯))) |
11 | 3, 10 | mpan 686 |
. . . . . . . . . . . 12
β’ (π₯ β πΌ β ((0g β (πΌ Γ {(ringLModβπ
)}))βπ₯) = (0gβ((πΌ Γ {(ringLModβπ
)})βπ₯))) |
12 | 11 | adantl 480 |
. . . . . . . . . . 11
β’ ((((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β§ π₯ β πΌ) β ((0g β (πΌ Γ {(ringLModβπ
)}))βπ₯) = (0gβ((πΌ Γ {(ringLModβπ
)})βπ₯))) |
13 | 1 | fvconst2 7206 |
. . . . . . . . . . . . . 14
β’ (π₯ β πΌ β ((πΌ Γ {(ringLModβπ
)})βπ₯) = (ringLModβπ
)) |
14 | 13 | adantl 480 |
. . . . . . . . . . . . 13
β’ ((((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β§ π₯ β πΌ) β ((πΌ Γ {(ringLModβπ
)})βπ₯) = (ringLModβπ
)) |
15 | 14 | fveq2d 6894 |
. . . . . . . . . . . 12
β’ ((((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β§ π₯ β πΌ) β (0gβ((πΌ Γ {(ringLModβπ
)})βπ₯)) =
(0gβ(ringLModβπ
))) |
16 | | frlmbas.z |
. . . . . . . . . . . . 13
β’ 0 =
(0gβπ
) |
17 | | rlm0 20964 |
. . . . . . . . . . . . 13
β’
(0gβπ
) =
(0gβ(ringLModβπ
)) |
18 | 16, 17 | eqtri 2758 |
. . . . . . . . . . . 12
β’ 0 =
(0gβ(ringLModβπ
)) |
19 | 15, 18 | eqtr4di 2788 |
. . . . . . . . . . 11
β’ ((((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β§ π₯ β πΌ) β (0gβ((πΌ Γ {(ringLModβπ
)})βπ₯)) = 0 ) |
20 | 12, 19 | eqtrd 2770 |
. . . . . . . . . 10
β’ ((((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β§ π₯ β πΌ) β ((0g β (πΌ Γ {(ringLModβπ
)}))βπ₯) = 0 ) |
21 | 20 | neeq2d 2999 |
. . . . . . . . 9
β’ ((((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β§ π₯ β πΌ) β ((πβπ₯) β ((0g β (πΌ Γ {(ringLModβπ
)}))βπ₯) β (πβπ₯) β 0 )) |
22 | 21 | rabbidva 3437 |
. . . . . . . 8
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β {π₯ β πΌ β£ (πβπ₯) β ((0g β (πΌ Γ {(ringLModβπ
)}))βπ₯)} = {π₯ β πΌ β£ (πβπ₯) β 0 }) |
23 | | elmapfn 8861 |
. . . . . . . . . 10
β’ (π β (π βm πΌ) β π Fn πΌ) |
24 | 23 | adantl 480 |
. . . . . . . . 9
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β π Fn πΌ) |
25 | | fn0g 18588 |
. . . . . . . . . 10
β’
0g Fn V |
26 | | ssv 4005 |
. . . . . . . . . 10
β’ ran
(πΌ Γ
{(ringLModβπ
)})
β V |
27 | | fnco 6666 |
. . . . . . . . . 10
β’
((0g Fn V β§ (πΌ Γ {(ringLModβπ
)}) Fn πΌ β§ ran (πΌ Γ {(ringLModβπ
)}) β V) β (0g β
(πΌ Γ
{(ringLModβπ
)})) Fn
πΌ) |
28 | 25, 3, 26, 27 | mp3an 1459 |
. . . . . . . . 9
β’
(0g β (πΌ Γ {(ringLModβπ
)})) Fn πΌ |
29 | | fndmdif 7042 |
. . . . . . . . 9
β’ ((π Fn πΌ β§ (0g β (πΌ Γ {(ringLModβπ
)})) Fn πΌ) β dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) = {π₯ β πΌ β£ (πβπ₯) β ((0g β (πΌ Γ {(ringLModβπ
)}))βπ₯)}) |
30 | 24, 28, 29 | sylancl 584 |
. . . . . . . 8
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) = {π₯ β πΌ β£ (πβπ₯) β ((0g β (πΌ Γ {(ringLModβπ
)}))βπ₯)}) |
31 | | simplr 765 |
. . . . . . . . 9
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β πΌ β π) |
32 | 16 | fvexi 6904 |
. . . . . . . . . 10
β’ 0 β
V |
33 | 32 | a1i 11 |
. . . . . . . . 9
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β 0 β V) |
34 | | suppvalfn 8156 |
. . . . . . . . 9
β’ ((π Fn πΌ β§ πΌ β π β§ 0 β V) β (π supp 0 ) = {π₯ β πΌ β£ (πβπ₯) β 0 }) |
35 | 24, 31, 33, 34 | syl3anc 1369 |
. . . . . . . 8
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β (π supp 0 ) = {π₯ β πΌ β£ (πβπ₯) β 0 }) |
36 | 22, 30, 35 | 3eqtr4d 2780 |
. . . . . . 7
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) = (π supp 0 )) |
37 | 36 | eleq1d 2816 |
. . . . . 6
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β (dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β Fin β (π supp 0 ) β
Fin)) |
38 | | elmapfun 8862 |
. . . . . . . . 9
β’ (π β (π βm πΌ) β Fun π) |
39 | | id 22 |
. . . . . . . . 9
β’ (π β (π βm πΌ) β π β (π βm πΌ)) |
40 | 32 | a1i 11 |
. . . . . . . . 9
β’ (π β (π βm πΌ) β 0 β V) |
41 | 38, 39, 40 | 3jca 1126 |
. . . . . . . 8
β’ (π β (π βm πΌ) β (Fun π β§ π β (π βm πΌ) β§ 0 β
V)) |
42 | 41 | adantl 480 |
. . . . . . 7
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β (Fun π β§ π β (π βm πΌ) β§ 0 β
V)) |
43 | | funisfsupp 9369 |
. . . . . . 7
β’ ((Fun
π β§ π β (π βm πΌ) β§ 0 β V) β (π finSupp 0 β (π supp 0 ) β
Fin)) |
44 | 42, 43 | syl 17 |
. . . . . 6
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β (π finSupp 0 β (π supp 0 ) β
Fin)) |
45 | 37, 44 | bitr4d 281 |
. . . . 5
β’ (((π
β π β§ πΌ β π) β§ π β (π βm πΌ)) β (dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β Fin β π finSupp 0 )) |
46 | 45 | rabbidva 3437 |
. . . 4
β’ ((π
β π β§ πΌ β π) β {π β (π βm πΌ) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β Fin} = {π β (π βm πΌ) β£ π finSupp 0 }) |
47 | | eqid 2730 |
. . . . . . . . 9
β’
((ringLModβπ
)
βs πΌ) = ((ringLModβπ
) βs πΌ) |
48 | | frlmbas.n |
. . . . . . . . . 10
β’ π = (Baseβπ
) |
49 | | rlmbas 20962 |
. . . . . . . . . 10
β’
(Baseβπ
) =
(Baseβ(ringLModβπ
)) |
50 | 48, 49 | eqtri 2758 |
. . . . . . . . 9
β’ π =
(Baseβ(ringLModβπ
)) |
51 | 47, 50 | pwsbas 17437 |
. . . . . . . 8
β’
(((ringLModβπ
)
β V β§ πΌ β
π) β (π βm πΌ) =
(Baseβ((ringLModβπ
) βs πΌ))) |
52 | 1, 51 | mpan 686 |
. . . . . . 7
β’ (πΌ β π β (π βm πΌ) = (Baseβ((ringLModβπ
) βs
πΌ))) |
53 | 52 | adantl 480 |
. . . . . 6
β’ ((π
β π β§ πΌ β π) β (π βm πΌ) = (Baseβ((ringLModβπ
) βs
πΌ))) |
54 | | eqid 2730 |
. . . . . . . . . . 11
β’
(Scalarβ(ringLModβπ
)) = (Scalarβ(ringLModβπ
)) |
55 | 47, 54 | pwsval 17436 |
. . . . . . . . . 10
β’
(((ringLModβπ
)
β V β§ πΌ β
π) β
((ringLModβπ
)
βs πΌ) = ((Scalarβ(ringLModβπ
))Xs(πΌ Γ {(ringLModβπ
)}))) |
56 | 1, 55 | mpan 686 |
. . . . . . . . 9
β’ (πΌ β π β ((ringLModβπ
) βs πΌ) =
((Scalarβ(ringLModβπ
))Xs(πΌ Γ {(ringLModβπ
)}))) |
57 | 56 | adantl 480 |
. . . . . . . 8
β’ ((π
β π β§ πΌ β π) β ((ringLModβπ
) βs πΌ) =
((Scalarβ(ringLModβπ
))Xs(πΌ Γ {(ringLModβπ
)}))) |
58 | | rlmsca 20967 |
. . . . . . . . . 10
β’ (π
β π β π
= (Scalarβ(ringLModβπ
))) |
59 | 58 | adantr 479 |
. . . . . . . . 9
β’ ((π
β π β§ πΌ β π) β π
= (Scalarβ(ringLModβπ
))) |
60 | 59 | oveq1d 7426 |
. . . . . . . 8
β’ ((π
β π β§ πΌ β π) β (π
Xs(πΌ Γ {(ringLModβπ
)})) = ((Scalarβ(ringLModβπ
))Xs(πΌ Γ {(ringLModβπ
)}))) |
61 | 57, 60 | eqtr4d 2773 |
. . . . . . 7
β’ ((π
β π β§ πΌ β π) β ((ringLModβπ
) βs πΌ) = (π
Xs(πΌ Γ {(ringLModβπ
)}))) |
62 | 61 | fveq2d 6894 |
. . . . . 6
β’ ((π
β π β§ πΌ β π) β (Baseβ((ringLModβπ
) βs
πΌ)) = (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)})))) |
63 | 53, 62 | eqtrd 2770 |
. . . . 5
β’ ((π
β π β§ πΌ β π) β (π βm πΌ) = (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)})))) |
64 | 63 | rabeqdv 3445 |
. . . 4
β’ ((π
β π β§ πΌ β π) β {π β (π βm πΌ) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β Fin} = {π β (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)}))) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β
Fin}) |
65 | 46, 64 | eqtr3d 2772 |
. . 3
β’ ((π
β π β§ πΌ β π) β {π β (π βm πΌ) β£ π finSupp 0 } = {π β (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)}))) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β
Fin}) |
66 | 9, 65 | eqtrid 2782 |
. 2
β’ ((π
β π β§ πΌ β π) β π΅ = {π β (Baseβ(π
Xs(πΌ Γ {(ringLModβπ
)}))) β£ dom (π β (0g β (πΌ Γ {(ringLModβπ
)}))) β
Fin}) |
67 | | frlmval.f |
. . . 4
β’ πΉ = (π
freeLMod πΌ) |
68 | 67 | frlmval 21522 |
. . 3
β’ ((π
β π β§ πΌ β π) β πΉ = (π
βm (πΌ Γ {(ringLModβπ
)}))) |
69 | 68 | fveq2d 6894 |
. 2
β’ ((π
β π β§ πΌ β π) β (BaseβπΉ) = (Baseβ(π
βm (πΌ Γ {(ringLModβπ
)})))) |
70 | 8, 66, 69 | 3eqtr4d 2780 |
1
β’ ((π
β π β§ πΌ β π) β π΅ = (BaseβπΉ)) |