![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pws0g | Structured version Visualization version GIF version |
Description: Zero in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsmnd.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pws0g.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
pws0g | ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
2 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
3 | fvexd 6935 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) | |
4 | fconst6g 6810 | . . . 4 ⊢ (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd) | |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Mnd) |
6 | 1, 2, 3, 5 | prds0g 18806 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
7 | fconstmpt 5762 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
8 | elex 3509 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ V) | |
9 | 8 | ad2antrr 725 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
10 | fconstmpt 5762 | . . . . 5 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅)) |
12 | fn0g 18701 | . . . . . 6 ⊢ 0g Fn V | |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 0g Fn V) |
14 | dffn5 6980 | . . . . 5 ⊢ (0g Fn V ↔ 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) | |
15 | 13, 14 | sylib 218 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) |
16 | fveq2 6920 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
17 | pws0g.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
18 | 16, 17 | eqtr4di 2798 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
19 | 9, 11, 15, 18 | fmptco 7163 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (𝑥 ∈ 𝐼 ↦ 0 )) |
20 | 7, 19 | eqtr4id 2799 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g ∘ (𝐼 × {𝑅}))) |
21 | pwsmnd.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
22 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
23 | 21, 22 | pwsval 17546 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
24 | 23 | fveq2d 6924 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g‘𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
25 | 6, 20, 24 | 3eqtr4d 2790 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ↦ cmpt 5249 × cxp 5698 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Scalarcsca 17314 0gc0g 17499 Xscprds 17505 ↑s cpws 17506 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: pwsdiagmhm 18866 pwsco1mhm 18867 pwsco2mhm 18868 frlm0 21797 evls1fpws 22394 plypf1 26271 evlsvvval 42518 pwssplit4 43046 pwslnmlem2 43050 |
Copyright terms: Public domain | W3C validator |