| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pws0g | Structured version Visualization version GIF version | ||
| Description: The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsmnd.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pws0g.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| pws0g | ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
| 3 | fvexd 6876 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) | |
| 4 | fconst6g 6752 | . . . 4 ⊢ (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Mnd) |
| 6 | 1, 2, 3, 5 | prds0g 18705 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 7 | fconstmpt 5703 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
| 8 | elex 3471 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ V) | |
| 9 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
| 10 | fconstmpt 5703 | . . . . 5 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅)) |
| 12 | fn0g 18597 | . . . . . 6 ⊢ 0g Fn V | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 0g Fn V) |
| 14 | dffn5 6922 | . . . . 5 ⊢ (0g Fn V ↔ 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) |
| 16 | fveq2 6861 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 17 | pws0g.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 18 | 16, 17 | eqtr4di 2783 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 19 | 9, 11, 15, 18 | fmptco 7104 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (𝑥 ∈ 𝐼 ↦ 0 )) |
| 20 | 7, 19 | eqtr4id 2784 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g ∘ (𝐼 × {𝑅}))) |
| 21 | pwsmnd.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 22 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 23 | 21, 22 | pwsval 17456 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 24 | 23 | fveq2d 6865 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g‘𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 25 | 6, 20, 24 | 3eqtr4d 2775 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ↦ cmpt 5191 × cxp 5639 ∘ ccom 5645 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Scalarcsca 17230 0gc0g 17409 Xscprds 17415 ↑s cpws 17416 Mndcmnd 18668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 |
| This theorem is referenced by: pwsdiagmhm 18765 pwsco1mhm 18766 pwsco2mhm 18767 frlm0 21670 evls1fpws 22263 plypf1 26124 evlsvvval 42558 pwssplit4 43085 pwslnmlem2 43089 |
| Copyright terms: Public domain | W3C validator |