MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pws0g Structured version   Visualization version   GIF version

Theorem pws0g 18723
Description: Zero in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsmnd.y 𝑌 = (𝑅s 𝐼)
pws0g.z 0 = (0g𝑅)
Assertion
Ref Expression
pws0g ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × { 0 }) = (0g𝑌))

Proof of Theorem pws0g
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 simpr 484 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝐼𝑉)
3 fvexd 6906 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (Scalar‘𝑅) ∈ V)
4 fconst6g 6780 . . . 4 (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd)
54adantr 480 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × {𝑅}):𝐼⟶Mnd)
61, 2, 3, 5prds0g 18721 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (0g ∘ (𝐼 × {𝑅})) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
7 fconstmpt 5734 . . 3 (𝐼 × { 0 }) = (𝑥𝐼0 )
8 elex 3489 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ V)
98ad2antrr 725 . . . 4 (((𝑅 ∈ Mnd ∧ 𝐼𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ V)
10 fconstmpt 5734 . . . . 5 (𝐼 × {𝑅}) = (𝑥𝐼𝑅)
1110a1i 11 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × {𝑅}) = (𝑥𝐼𝑅))
12 fn0g 18616 . . . . . 6 0g Fn V
1312a1i 11 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 0g Fn V)
14 dffn5 6951 . . . . 5 (0g Fn V ↔ 0g = (𝑟 ∈ V ↦ (0g𝑟)))
1513, 14sylib 217 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 0g = (𝑟 ∈ V ↦ (0g𝑟)))
16 fveq2 6891 . . . . 5 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
17 pws0g.z . . . . 5 0 = (0g𝑅)
1816, 17eqtr4di 2786 . . . 4 (𝑟 = 𝑅 → (0g𝑟) = 0 )
199, 11, 15, 18fmptco 7132 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (0g ∘ (𝐼 × {𝑅})) = (𝑥𝐼0 ))
207, 19eqtr4id 2787 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × { 0 }) = (0g ∘ (𝐼 × {𝑅})))
21 pwsmnd.y . . . 4 𝑌 = (𝑅s 𝐼)
22 eqid 2728 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
2321, 22pwsval 17461 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
2423fveq2d 6895 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (0g𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
256, 20, 243eqtr4d 2778 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × { 0 }) = (0g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  {csn 4624  cmpt 5225   × cxp 5670  ccom 5676   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  Scalarcsca 17229  0gc0g 17414  Xscprds 17420  s cpws 17421  Mndcmnd 18687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-prds 17422  df-pws 17424  df-mgm 18593  df-sgrp 18672  df-mnd 18688
This theorem is referenced by:  pwsdiagmhm  18776  pwsco1mhm  18777  pwsco2mhm  18778  frlm0  21681  plypf1  26139  evls1fpws  33240  evlsvvval  41790  pwssplit4  42507  pwslnmlem2  42511
  Copyright terms: Public domain W3C validator