![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pws0g | Structured version Visualization version GIF version |
Description: Zero in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsmnd.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pws0g.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
pws0g | ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
2 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
3 | fvexd 6921 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) | |
4 | fconst6g 6797 | . . . 4 ⊢ (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd) | |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Mnd) |
6 | 1, 2, 3, 5 | prds0g 18796 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
7 | fconstmpt 5750 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
8 | elex 3498 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ V) | |
9 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
10 | fconstmpt 5750 | . . . . 5 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅)) |
12 | fn0g 18688 | . . . . . 6 ⊢ 0g Fn V | |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 0g Fn V) |
14 | dffn5 6966 | . . . . 5 ⊢ (0g Fn V ↔ 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) | |
15 | 13, 14 | sylib 218 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) |
16 | fveq2 6906 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
17 | pws0g.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
18 | 16, 17 | eqtr4di 2792 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
19 | 9, 11, 15, 18 | fmptco 7148 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (𝑥 ∈ 𝐼 ↦ 0 )) |
20 | 7, 19 | eqtr4id 2793 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g ∘ (𝐼 × {𝑅}))) |
21 | pwsmnd.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
22 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
23 | 21, 22 | pwsval 17532 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
24 | 23 | fveq2d 6910 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g‘𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
25 | 6, 20, 24 | 3eqtr4d 2784 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 {csn 4630 ↦ cmpt 5230 × cxp 5686 ∘ ccom 5692 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 Scalarcsca 17300 0gc0g 17485 Xscprds 17491 ↑s cpws 17492 Mndcmnd 18759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17487 df-prds 17493 df-pws 17495 df-mgm 18665 df-sgrp 18744 df-mnd 18760 |
This theorem is referenced by: pwsdiagmhm 18856 pwsco1mhm 18857 pwsco2mhm 18858 frlm0 21791 evls1fpws 22388 plypf1 26265 evlsvvval 42549 pwssplit4 43077 pwslnmlem2 43081 |
Copyright terms: Public domain | W3C validator |