MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pws0g Structured version   Visualization version   GIF version

Theorem pws0g 18665
Description: The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsmnd.y 𝑌 = (𝑅s 𝐼)
pws0g.z 0 = (0g𝑅)
Assertion
Ref Expression
pws0g ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × { 0 }) = (0g𝑌))

Proof of Theorem pws0g
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 simpr 484 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝐼𝑉)
3 fvexd 6841 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (Scalar‘𝑅) ∈ V)
4 fconst6g 6717 . . . 4 (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd)
54adantr 480 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × {𝑅}):𝐼⟶Mnd)
61, 2, 3, 5prds0g 18663 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (0g ∘ (𝐼 × {𝑅})) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
7 fconstmpt 5685 . . 3 (𝐼 × { 0 }) = (𝑥𝐼0 )
8 elex 3459 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ V)
98ad2antrr 726 . . . 4 (((𝑅 ∈ Mnd ∧ 𝐼𝑉) ∧ 𝑥𝐼) → 𝑅 ∈ V)
10 fconstmpt 5685 . . . . 5 (𝐼 × {𝑅}) = (𝑥𝐼𝑅)
1110a1i 11 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × {𝑅}) = (𝑥𝐼𝑅))
12 fn0g 18555 . . . . . 6 0g Fn V
1312a1i 11 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 0g Fn V)
14 dffn5 6885 . . . . 5 (0g Fn V ↔ 0g = (𝑟 ∈ V ↦ (0g𝑟)))
1513, 14sylib 218 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 0g = (𝑟 ∈ V ↦ (0g𝑟)))
16 fveq2 6826 . . . . 5 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
17 pws0g.z . . . . 5 0 = (0g𝑅)
1816, 17eqtr4di 2782 . . . 4 (𝑟 = 𝑅 → (0g𝑟) = 0 )
199, 11, 15, 18fmptco 7067 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (0g ∘ (𝐼 × {𝑅})) = (𝑥𝐼0 ))
207, 19eqtr4id 2783 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × { 0 }) = (0g ∘ (𝐼 × {𝑅})))
21 pwsmnd.y . . . 4 𝑌 = (𝑅s 𝐼)
22 eqid 2729 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
2321, 22pwsval 17408 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
2423fveq2d 6830 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (0g𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
256, 20, 243eqtr4d 2774 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × { 0 }) = (0g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cmpt 5176   × cxp 5621  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  Scalarcsca 17182  0gc0g 17361  Xscprds 17367  s cpws 17368  Mndcmnd 18626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-pws 17371  df-mgm 18532  df-sgrp 18611  df-mnd 18627
This theorem is referenced by:  pwsdiagmhm  18723  pwsco1mhm  18724  pwsco2mhm  18725  frlm0  21679  evls1fpws  22272  plypf1  26133  evlsvvval  42539  pwssplit4  43065  pwslnmlem2  43069
  Copyright terms: Public domain W3C validator