Step | Hyp | Ref
| Expression |
1 | | prdsinvlem.n |
. . 3
⊢ 𝑁 = (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) |
2 | | prdsinvlem.r |
. . . . . . 7
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
3 | 2 | ffvelrnda 6842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Grp) |
4 | | prdsinvlem.y |
. . . . . . 7
⊢ 𝑌 = (𝑆Xs𝑅) |
5 | | prdsinvlem.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
6 | | prdsinvlem.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
7 | 6 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
8 | | prdsinvlem.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
9 | 8 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
10 | 2 | ffnd 6499 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
11 | 10 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
12 | | prdsinvlem.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
13 | 12 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐹 ∈ 𝐵) |
14 | | simpr 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
15 | 4, 5, 7, 9, 11, 13, 14 | prdsbasprj 16803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
16 | | eqid 2758 |
. . . . . . 7
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
17 | | eqid 2758 |
. . . . . . 7
⊢
(invg‘(𝑅‘𝑦)) = (invg‘(𝑅‘𝑦)) |
18 | 16, 17 | grpinvcl 18218 |
. . . . . 6
⊢ (((𝑅‘𝑦) ∈ Grp ∧ (𝐹‘𝑦) ∈ (Base‘(𝑅‘𝑦))) → ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
19 | 3, 15, 18 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
20 | 19 | ralrimiva 3113 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
21 | 4, 5, 6, 8, 10 | prdsbasmpt 16801 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐼 ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) ∈ (Base‘(𝑅‘𝑦)))) |
22 | 20, 21 | mpbird 260 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) ∈ 𝐵) |
23 | 1, 22 | eqeltrid 2856 |
. 2
⊢ (𝜑 → 𝑁 ∈ 𝐵) |
24 | 2 | ffvelrnda 6842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ Grp) |
25 | 6 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
26 | 8 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
27 | 10 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
28 | 12 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐵) |
29 | | simpr 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
30 | 4, 5, 25, 26, 27, 28, 29 | prdsbasprj 16803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
31 | | eqid 2758 |
. . . . . . 7
⊢
(Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) |
32 | | eqid 2758 |
. . . . . . 7
⊢
(+g‘(𝑅‘𝑥)) = (+g‘(𝑅‘𝑥)) |
33 | | eqid 2758 |
. . . . . . 7
⊢
(0g‘(𝑅‘𝑥)) = (0g‘(𝑅‘𝑥)) |
34 | | eqid 2758 |
. . . . . . 7
⊢
(invg‘(𝑅‘𝑥)) = (invg‘(𝑅‘𝑥)) |
35 | 31, 32, 33, 34 | grplinv 18219 |
. . . . . 6
⊢ (((𝑅‘𝑥) ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥))) → (((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))(+g‘(𝑅‘𝑥))(𝐹‘𝑥)) = (0g‘(𝑅‘𝑥))) |
36 | 24, 30, 35 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))(+g‘(𝑅‘𝑥))(𝐹‘𝑥)) = (0g‘(𝑅‘𝑥))) |
37 | | 2fveq3 6663 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (invg‘(𝑅‘𝑦)) = (invg‘(𝑅‘𝑥))) |
38 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
39 | 37, 38 | fveq12d 6665 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) = ((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))) |
40 | | fvex 6671 |
. . . . . . . 8
⊢
((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥)) ∈ V |
41 | 39, 1, 40 | fvmpt 6759 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐼 → (𝑁‘𝑥) = ((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))) |
42 | 41 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑁‘𝑥) = ((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))) |
43 | 42 | oveq1d 7165 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑁‘𝑥)(+g‘(𝑅‘𝑥))(𝐹‘𝑥)) = (((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))(+g‘(𝑅‘𝑥))(𝐹‘𝑥))) |
44 | | prdsinvlem.z |
. . . . . . 7
⊢ 0 =
(0g ∘ 𝑅) |
45 | 44 | fveq1i 6659 |
. . . . . 6
⊢ ( 0 ‘𝑥) = ((0g ∘
𝑅)‘𝑥) |
46 | | fvco2 6749 |
. . . . . . 7
⊢ ((𝑅 Fn 𝐼 ∧ 𝑥 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑥) = (0g‘(𝑅‘𝑥))) |
47 | 10, 46 | sylan 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑥) = (0g‘(𝑅‘𝑥))) |
48 | 45, 47 | syl5eq 2805 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( 0 ‘𝑥) = (0g‘(𝑅‘𝑥))) |
49 | 36, 43, 48 | 3eqtr4d 2803 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑁‘𝑥)(+g‘(𝑅‘𝑥))(𝐹‘𝑥)) = ( 0 ‘𝑥)) |
50 | 49 | mpteq2dva 5127 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝑁‘𝑥)(+g‘(𝑅‘𝑥))(𝐹‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ( 0 ‘𝑥))) |
51 | | prdsinvlem.p |
. . . 4
⊢ + =
(+g‘𝑌) |
52 | 4, 5, 6, 8, 10, 23, 12, 51 | prdsplusgval 16804 |
. . 3
⊢ (𝜑 → (𝑁 + 𝐹) = (𝑥 ∈ 𝐼 ↦ ((𝑁‘𝑥)(+g‘(𝑅‘𝑥))(𝐹‘𝑥)))) |
53 | | fn0g 17939 |
. . . . . 6
⊢
0g Fn V |
54 | | ssv 3916 |
. . . . . . 7
⊢ ran 𝑅 ⊆ V |
55 | 54 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ran 𝑅 ⊆ V) |
56 | | fnco 6448 |
. . . . . 6
⊢
((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g ∘
𝑅) Fn 𝐼) |
57 | 53, 10, 55, 56 | mp3an2i 1463 |
. . . . 5
⊢ (𝜑 → (0g ∘
𝑅) Fn 𝐼) |
58 | 44 | fneq1i 6431 |
. . . . 5
⊢ ( 0 Fn 𝐼 ↔ (0g ∘
𝑅) Fn 𝐼) |
59 | 57, 58 | sylibr 237 |
. . . 4
⊢ (𝜑 → 0 Fn 𝐼) |
60 | | dffn5 6712 |
. . . 4
⊢ ( 0 Fn 𝐼 ↔ 0 = (𝑥 ∈ 𝐼 ↦ ( 0 ‘𝑥))) |
61 | 59, 60 | sylib 221 |
. . 3
⊢ (𝜑 → 0 = (𝑥 ∈ 𝐼 ↦ ( 0 ‘𝑥))) |
62 | 50, 52, 61 | 3eqtr4d 2803 |
. 2
⊢ (𝜑 → (𝑁 + 𝐹) = 0 ) |
63 | 23, 62 | jca 515 |
1
⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ (𝑁 + 𝐹) = 0 )) |