Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvlem Structured version   Visualization version   GIF version

Theorem prdsinvlem 18275
 Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y 𝑌 = (𝑆Xs𝑅)
prdsinvlem.b 𝐵 = (Base‘𝑌)
prdsinvlem.p + = (+g𝑌)
prdsinvlem.s (𝜑𝑆𝑉)
prdsinvlem.i (𝜑𝐼𝑊)
prdsinvlem.r (𝜑𝑅:𝐼⟶Grp)
prdsinvlem.f (𝜑𝐹𝐵)
prdsinvlem.z 0 = (0g𝑅)
prdsinvlem.n 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
Assertion
Ref Expression
prdsinvlem (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem prdsinvlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
2 prdsinvlem.r . . . . . . 7 (𝜑𝑅:𝐼⟶Grp)
32ffvelrnda 6842 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Grp)
4 prdsinvlem.y . . . . . . 7 𝑌 = (𝑆Xs𝑅)
5 prdsinvlem.b . . . . . . 7 𝐵 = (Base‘𝑌)
6 prdsinvlem.s . . . . . . . 8 (𝜑𝑆𝑉)
76adantr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑆𝑉)
8 prdsinvlem.i . . . . . . . 8 (𝜑𝐼𝑊)
98adantr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐼𝑊)
102ffnd 6499 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
1110adantr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑅 Fn 𝐼)
12 prdsinvlem.f . . . . . . . 8 (𝜑𝐹𝐵)
1312adantr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹𝐵)
14 simpr 488 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑦𝐼)
154, 5, 7, 9, 11, 13, 14prdsbasprj 16803 . . . . . 6 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘(𝑅𝑦)))
16 eqid 2758 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
17 eqid 2758 . . . . . . 7 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
1816, 17grpinvcl 18218 . . . . . 6 (((𝑅𝑦) ∈ Grp ∧ (𝐹𝑦) ∈ (Base‘(𝑅𝑦))) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
193, 15, 18syl2anc 587 . . . . 5 ((𝜑𝑦𝐼) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
2019ralrimiva 3113 . . . 4 (𝜑 → ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
214, 5, 6, 8, 10prdsbasmpt 16801 . . . 4 (𝜑 → ((𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦))))
2220, 21mpbird 260 . . 3 (𝜑 → (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵)
231, 22eqeltrid 2856 . 2 (𝜑𝑁𝐵)
242ffvelrnda 6842 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Grp)
256adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑉)
268adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
2710adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
2812adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐹𝐵)
29 simpr 488 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
304, 5, 25, 26, 27, 28, 29prdsbasprj 16803 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
31 eqid 2758 . . . . . . 7 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
32 eqid 2758 . . . . . . 7 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
33 eqid 2758 . . . . . . 7 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
34 eqid 2758 . . . . . . 7 (invg‘(𝑅𝑥)) = (invg‘(𝑅𝑥))
3531, 32, 33, 34grplinv 18219 . . . . . 6 (((𝑅𝑥) ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘(𝑅𝑥))) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
3624, 30, 35syl2anc 587 . . . . 5 ((𝜑𝑥𝐼) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
37 2fveq3 6663 . . . . . . . . 9 (𝑦 = 𝑥 → (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑥)))
38 fveq2 6658 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3937, 38fveq12d 6665 . . . . . . . 8 (𝑦 = 𝑥 → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
40 fvex 6671 . . . . . . . 8 ((invg‘(𝑅𝑥))‘(𝐹𝑥)) ∈ V
4139, 1, 40fvmpt 6759 . . . . . . 7 (𝑥𝐼 → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4241adantl 485 . . . . . 6 ((𝜑𝑥𝐼) → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4342oveq1d 7165 . . . . 5 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)))
44 prdsinvlem.z . . . . . . 7 0 = (0g𝑅)
4544fveq1i 6659 . . . . . 6 ( 0𝑥) = ((0g𝑅)‘𝑥)
46 fvco2 6749 . . . . . . 7 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4710, 46sylan 583 . . . . . 6 ((𝜑𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4845, 47syl5eq 2805 . . . . 5 ((𝜑𝑥𝐼) → ( 0𝑥) = (0g‘(𝑅𝑥)))
4936, 43, 483eqtr4d 2803 . . . 4 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = ( 0𝑥))
5049mpteq2dva 5127 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))) = (𝑥𝐼 ↦ ( 0𝑥)))
51 prdsinvlem.p . . . 4 + = (+g𝑌)
524, 5, 6, 8, 10, 23, 12, 51prdsplusgval 16804 . . 3 (𝜑 → (𝑁 + 𝐹) = (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))))
53 fn0g 17939 . . . . . 6 0g Fn V
54 ssv 3916 . . . . . . 7 ran 𝑅 ⊆ V
5554a1i 11 . . . . . 6 (𝜑 → ran 𝑅 ⊆ V)
56 fnco 6448 . . . . . 6 ((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g𝑅) Fn 𝐼)
5753, 10, 55, 56mp3an2i 1463 . . . . 5 (𝜑 → (0g𝑅) Fn 𝐼)
5844fneq1i 6431 . . . . 5 ( 0 Fn 𝐼 ↔ (0g𝑅) Fn 𝐼)
5957, 58sylibr 237 . . . 4 (𝜑0 Fn 𝐼)
60 dffn5 6712 . . . 4 ( 0 Fn 𝐼0 = (𝑥𝐼 ↦ ( 0𝑥)))
6159, 60sylib 221 . . 3 (𝜑0 = (𝑥𝐼 ↦ ( 0𝑥)))
6250, 52, 613eqtr4d 2803 . 2 (𝜑 → (𝑁 + 𝐹) = 0 )
6323, 62jca 515 1 (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409   ⊆ wss 3858   ↦ cmpt 5112  ran crn 5525   ∘ ccom 5528   Fn wfn 6330  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  0gc0g 16771  Xscprds 16777  Grpcgrp 18169  invgcminusg 18170 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-plusg 16636  df-mulr 16637  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-hom 16647  df-cco 16648  df-0g 16773  df-prds 16779  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173 This theorem is referenced by:  prdsgrpd  18276  prdsinvgd  18277
 Copyright terms: Public domain W3C validator