MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvlem Structured version   Visualization version   GIF version

Theorem prdsinvlem 19080
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y 𝑌 = (𝑆Xs𝑅)
prdsinvlem.b 𝐵 = (Base‘𝑌)
prdsinvlem.p + = (+g𝑌)
prdsinvlem.s (𝜑𝑆𝑉)
prdsinvlem.i (𝜑𝐼𝑊)
prdsinvlem.r (𝜑𝑅:𝐼⟶Grp)
prdsinvlem.f (𝜑𝐹𝐵)
prdsinvlem.z 0 = (0g𝑅)
prdsinvlem.n 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
Assertion
Ref Expression
prdsinvlem (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem prdsinvlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
2 prdsinvlem.r . . . . . . 7 (𝜑𝑅:𝐼⟶Grp)
32ffvelcdmda 7104 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Grp)
4 prdsinvlem.y . . . . . . 7 𝑌 = (𝑆Xs𝑅)
5 prdsinvlem.b . . . . . . 7 𝐵 = (Base‘𝑌)
6 prdsinvlem.s . . . . . . . 8 (𝜑𝑆𝑉)
76adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑆𝑉)
8 prdsinvlem.i . . . . . . . 8 (𝜑𝐼𝑊)
98adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐼𝑊)
102ffnd 6738 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
1110adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑅 Fn 𝐼)
12 prdsinvlem.f . . . . . . . 8 (𝜑𝐹𝐵)
1312adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹𝐵)
14 simpr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑦𝐼)
154, 5, 7, 9, 11, 13, 14prdsbasprj 17519 . . . . . 6 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘(𝑅𝑦)))
16 eqid 2735 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
17 eqid 2735 . . . . . . 7 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
1816, 17grpinvcl 19018 . . . . . 6 (((𝑅𝑦) ∈ Grp ∧ (𝐹𝑦) ∈ (Base‘(𝑅𝑦))) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
193, 15, 18syl2anc 584 . . . . 5 ((𝜑𝑦𝐼) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
2019ralrimiva 3144 . . . 4 (𝜑 → ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
214, 5, 6, 8, 10prdsbasmpt 17517 . . . 4 (𝜑 → ((𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦))))
2220, 21mpbird 257 . . 3 (𝜑 → (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵)
231, 22eqeltrid 2843 . 2 (𝜑𝑁𝐵)
242ffvelcdmda 7104 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Grp)
256adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑉)
268adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
2710adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
2812adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐹𝐵)
29 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
304, 5, 25, 26, 27, 28, 29prdsbasprj 17519 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
31 eqid 2735 . . . . . . 7 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
32 eqid 2735 . . . . . . 7 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
33 eqid 2735 . . . . . . 7 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
34 eqid 2735 . . . . . . 7 (invg‘(𝑅𝑥)) = (invg‘(𝑅𝑥))
3531, 32, 33, 34grplinv 19020 . . . . . 6 (((𝑅𝑥) ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘(𝑅𝑥))) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
3624, 30, 35syl2anc 584 . . . . 5 ((𝜑𝑥𝐼) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
37 2fveq3 6912 . . . . . . . . 9 (𝑦 = 𝑥 → (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑥)))
38 fveq2 6907 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3937, 38fveq12d 6914 . . . . . . . 8 (𝑦 = 𝑥 → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
40 fvex 6920 . . . . . . . 8 ((invg‘(𝑅𝑥))‘(𝐹𝑥)) ∈ V
4139, 1, 40fvmpt 7016 . . . . . . 7 (𝑥𝐼 → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4241adantl 481 . . . . . 6 ((𝜑𝑥𝐼) → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4342oveq1d 7446 . . . . 5 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)))
44 prdsinvlem.z . . . . . . 7 0 = (0g𝑅)
4544fveq1i 6908 . . . . . 6 ( 0𝑥) = ((0g𝑅)‘𝑥)
46 fvco2 7006 . . . . . . 7 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4710, 46sylan 580 . . . . . 6 ((𝜑𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4845, 47eqtrid 2787 . . . . 5 ((𝜑𝑥𝐼) → ( 0𝑥) = (0g‘(𝑅𝑥)))
4936, 43, 483eqtr4d 2785 . . . 4 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = ( 0𝑥))
5049mpteq2dva 5248 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))) = (𝑥𝐼 ↦ ( 0𝑥)))
51 prdsinvlem.p . . . 4 + = (+g𝑌)
524, 5, 6, 8, 10, 23, 12, 51prdsplusgval 17520 . . 3 (𝜑 → (𝑁 + 𝐹) = (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))))
53 fn0g 18689 . . . . . 6 0g Fn V
54 ssv 4020 . . . . . . 7 ran 𝑅 ⊆ V
5554a1i 11 . . . . . 6 (𝜑 → ran 𝑅 ⊆ V)
56 fnco 6687 . . . . . 6 ((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g𝑅) Fn 𝐼)
5753, 10, 55, 56mp3an2i 1465 . . . . 5 (𝜑 → (0g𝑅) Fn 𝐼)
5844fneq1i 6666 . . . . 5 ( 0 Fn 𝐼 ↔ (0g𝑅) Fn 𝐼)
5957, 58sylibr 234 . . . 4 (𝜑0 Fn 𝐼)
60 dffn5 6967 . . . 4 ( 0 Fn 𝐼0 = (𝑥𝐼 ↦ ( 0𝑥)))
6159, 60sylib 218 . . 3 (𝜑0 = (𝑥𝐼 ↦ ( 0𝑥)))
6250, 52, 613eqtr4d 2785 . 2 (𝜑 → (𝑁 + 𝐹) = 0 )
6323, 62jca 511 1 (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  cmpt 5231  ran crn 5690  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Xscprds 17492  Grpcgrp 18964  invgcminusg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968
This theorem is referenced by:  prdsgrpd  19081  prdsinvgd  19082
  Copyright terms: Public domain W3C validator