MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvlem Structured version   Visualization version   GIF version

Theorem prdsinvlem 18200
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y 𝑌 = (𝑆Xs𝑅)
prdsinvlem.b 𝐵 = (Base‘𝑌)
prdsinvlem.p + = (+g𝑌)
prdsinvlem.s (𝜑𝑆𝑉)
prdsinvlem.i (𝜑𝐼𝑊)
prdsinvlem.r (𝜑𝑅:𝐼⟶Grp)
prdsinvlem.f (𝜑𝐹𝐵)
prdsinvlem.z 0 = (0g𝑅)
prdsinvlem.n 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
Assertion
Ref Expression
prdsinvlem (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem prdsinvlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
2 prdsinvlem.r . . . . . . 7 (𝜑𝑅:𝐼⟶Grp)
32ffvelrnda 6828 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Grp)
4 prdsinvlem.y . . . . . . 7 𝑌 = (𝑆Xs𝑅)
5 prdsinvlem.b . . . . . . 7 𝐵 = (Base‘𝑌)
6 prdsinvlem.s . . . . . . . 8 (𝜑𝑆𝑉)
76adantr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑆𝑉)
8 prdsinvlem.i . . . . . . . 8 (𝜑𝐼𝑊)
98adantr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐼𝑊)
102ffnd 6488 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
1110adantr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑅 Fn 𝐼)
12 prdsinvlem.f . . . . . . . 8 (𝜑𝐹𝐵)
1312adantr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹𝐵)
14 simpr 488 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑦𝐼)
154, 5, 7, 9, 11, 13, 14prdsbasprj 16737 . . . . . 6 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘(𝑅𝑦)))
16 eqid 2798 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
17 eqid 2798 . . . . . . 7 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
1816, 17grpinvcl 18143 . . . . . 6 (((𝑅𝑦) ∈ Grp ∧ (𝐹𝑦) ∈ (Base‘(𝑅𝑦))) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
193, 15, 18syl2anc 587 . . . . 5 ((𝜑𝑦𝐼) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
2019ralrimiva 3149 . . . 4 (𝜑 → ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
214, 5, 6, 8, 10prdsbasmpt 16735 . . . 4 (𝜑 → ((𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦))))
2220, 21mpbird 260 . . 3 (𝜑 → (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵)
231, 22eqeltrid 2894 . 2 (𝜑𝑁𝐵)
242ffvelrnda 6828 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Grp)
256adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑉)
268adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
2710adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
2812adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐹𝐵)
29 simpr 488 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
304, 5, 25, 26, 27, 28, 29prdsbasprj 16737 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
31 eqid 2798 . . . . . . 7 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
32 eqid 2798 . . . . . . 7 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
33 eqid 2798 . . . . . . 7 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
34 eqid 2798 . . . . . . 7 (invg‘(𝑅𝑥)) = (invg‘(𝑅𝑥))
3531, 32, 33, 34grplinv 18144 . . . . . 6 (((𝑅𝑥) ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘(𝑅𝑥))) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
3624, 30, 35syl2anc 587 . . . . 5 ((𝜑𝑥𝐼) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
37 2fveq3 6650 . . . . . . . . 9 (𝑦 = 𝑥 → (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑥)))
38 fveq2 6645 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3937, 38fveq12d 6652 . . . . . . . 8 (𝑦 = 𝑥 → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
40 fvex 6658 . . . . . . . 8 ((invg‘(𝑅𝑥))‘(𝐹𝑥)) ∈ V
4139, 1, 40fvmpt 6745 . . . . . . 7 (𝑥𝐼 → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4241adantl 485 . . . . . 6 ((𝜑𝑥𝐼) → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4342oveq1d 7150 . . . . 5 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)))
44 prdsinvlem.z . . . . . . 7 0 = (0g𝑅)
4544fveq1i 6646 . . . . . 6 ( 0𝑥) = ((0g𝑅)‘𝑥)
46 fvco2 6735 . . . . . . 7 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4710, 46sylan 583 . . . . . 6 ((𝜑𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4845, 47syl5eq 2845 . . . . 5 ((𝜑𝑥𝐼) → ( 0𝑥) = (0g‘(𝑅𝑥)))
4936, 43, 483eqtr4d 2843 . . . 4 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = ( 0𝑥))
5049mpteq2dva 5125 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))) = (𝑥𝐼 ↦ ( 0𝑥)))
51 prdsinvlem.p . . . 4 + = (+g𝑌)
524, 5, 6, 8, 10, 23, 12, 51prdsplusgval 16738 . . 3 (𝜑 → (𝑁 + 𝐹) = (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))))
53 fn0g 17865 . . . . . 6 0g Fn V
54 ssv 3939 . . . . . . 7 ran 𝑅 ⊆ V
5554a1i 11 . . . . . 6 (𝜑 → ran 𝑅 ⊆ V)
56 fnco 6437 . . . . . 6 ((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g𝑅) Fn 𝐼)
5753, 10, 55, 56mp3an2i 1463 . . . . 5 (𝜑 → (0g𝑅) Fn 𝐼)
5844fneq1i 6420 . . . . 5 ( 0 Fn 𝐼 ↔ (0g𝑅) Fn 𝐼)
5957, 58sylibr 237 . . . 4 (𝜑0 Fn 𝐼)
60 dffn5 6699 . . . 4 ( 0 Fn 𝐼0 = (𝑥𝐼 ↦ ( 0𝑥)))
6159, 60sylib 221 . . 3 (𝜑0 = (𝑥𝐼 ↦ ( 0𝑥)))
6250, 52, 613eqtr4d 2843 . 2 (𝜑 → (𝑁 + 𝐹) = 0 )
6323, 62jca 515 1 (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  cmpt 5110  ran crn 5520  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Xscprds 16711  Grpcgrp 18095  invgcminusg 18096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099
This theorem is referenced by:  prdsgrpd  18201  prdsinvgd  18202
  Copyright terms: Public domain W3C validator