MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvlem Structured version   Visualization version   GIF version

Theorem prdsinvlem 18988
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y 𝑌 = (𝑆Xs𝑅)
prdsinvlem.b 𝐵 = (Base‘𝑌)
prdsinvlem.p + = (+g𝑌)
prdsinvlem.s (𝜑𝑆𝑉)
prdsinvlem.i (𝜑𝐼𝑊)
prdsinvlem.r (𝜑𝑅:𝐼⟶Grp)
prdsinvlem.f (𝜑𝐹𝐵)
prdsinvlem.z 0 = (0g𝑅)
prdsinvlem.n 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
Assertion
Ref Expression
prdsinvlem (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem prdsinvlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
2 prdsinvlem.r . . . . . . 7 (𝜑𝑅:𝐼⟶Grp)
32ffvelcdmda 7059 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Grp)
4 prdsinvlem.y . . . . . . 7 𝑌 = (𝑆Xs𝑅)
5 prdsinvlem.b . . . . . . 7 𝐵 = (Base‘𝑌)
6 prdsinvlem.s . . . . . . . 8 (𝜑𝑆𝑉)
76adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑆𝑉)
8 prdsinvlem.i . . . . . . . 8 (𝜑𝐼𝑊)
98adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐼𝑊)
102ffnd 6692 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
1110adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑅 Fn 𝐼)
12 prdsinvlem.f . . . . . . . 8 (𝜑𝐹𝐵)
1312adantr 480 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹𝐵)
14 simpr 484 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑦𝐼)
154, 5, 7, 9, 11, 13, 14prdsbasprj 17442 . . . . . 6 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘(𝑅𝑦)))
16 eqid 2730 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
17 eqid 2730 . . . . . . 7 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
1816, 17grpinvcl 18926 . . . . . 6 (((𝑅𝑦) ∈ Grp ∧ (𝐹𝑦) ∈ (Base‘(𝑅𝑦))) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
193, 15, 18syl2anc 584 . . . . 5 ((𝜑𝑦𝐼) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
2019ralrimiva 3126 . . . 4 (𝜑 → ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
214, 5, 6, 8, 10prdsbasmpt 17440 . . . 4 (𝜑 → ((𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦))))
2220, 21mpbird 257 . . 3 (𝜑 → (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵)
231, 22eqeltrid 2833 . 2 (𝜑𝑁𝐵)
242ffvelcdmda 7059 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Grp)
256adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑉)
268adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
2710adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
2812adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐹𝐵)
29 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
304, 5, 25, 26, 27, 28, 29prdsbasprj 17442 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
31 eqid 2730 . . . . . . 7 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
32 eqid 2730 . . . . . . 7 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
33 eqid 2730 . . . . . . 7 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
34 eqid 2730 . . . . . . 7 (invg‘(𝑅𝑥)) = (invg‘(𝑅𝑥))
3531, 32, 33, 34grplinv 18928 . . . . . 6 (((𝑅𝑥) ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘(𝑅𝑥))) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
3624, 30, 35syl2anc 584 . . . . 5 ((𝜑𝑥𝐼) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
37 2fveq3 6866 . . . . . . . . 9 (𝑦 = 𝑥 → (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑥)))
38 fveq2 6861 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3937, 38fveq12d 6868 . . . . . . . 8 (𝑦 = 𝑥 → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
40 fvex 6874 . . . . . . . 8 ((invg‘(𝑅𝑥))‘(𝐹𝑥)) ∈ V
4139, 1, 40fvmpt 6971 . . . . . . 7 (𝑥𝐼 → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4241adantl 481 . . . . . 6 ((𝜑𝑥𝐼) → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4342oveq1d 7405 . . . . 5 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)))
44 prdsinvlem.z . . . . . . 7 0 = (0g𝑅)
4544fveq1i 6862 . . . . . 6 ( 0𝑥) = ((0g𝑅)‘𝑥)
46 fvco2 6961 . . . . . . 7 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4710, 46sylan 580 . . . . . 6 ((𝜑𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4845, 47eqtrid 2777 . . . . 5 ((𝜑𝑥𝐼) → ( 0𝑥) = (0g‘(𝑅𝑥)))
4936, 43, 483eqtr4d 2775 . . . 4 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = ( 0𝑥))
5049mpteq2dva 5203 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))) = (𝑥𝐼 ↦ ( 0𝑥)))
51 prdsinvlem.p . . . 4 + = (+g𝑌)
524, 5, 6, 8, 10, 23, 12, 51prdsplusgval 17443 . . 3 (𝜑 → (𝑁 + 𝐹) = (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))))
53 fn0g 18597 . . . . . 6 0g Fn V
54 ssv 3974 . . . . . . 7 ran 𝑅 ⊆ V
5554a1i 11 . . . . . 6 (𝜑 → ran 𝑅 ⊆ V)
56 fnco 6639 . . . . . 6 ((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g𝑅) Fn 𝐼)
5753, 10, 55, 56mp3an2i 1468 . . . . 5 (𝜑 → (0g𝑅) Fn 𝐼)
5844fneq1i 6618 . . . . 5 ( 0 Fn 𝐼 ↔ (0g𝑅) Fn 𝐼)
5957, 58sylibr 234 . . . 4 (𝜑0 Fn 𝐼)
60 dffn5 6922 . . . 4 ( 0 Fn 𝐼0 = (𝑥𝐼 ↦ ( 0𝑥)))
6159, 60sylib 218 . . 3 (𝜑0 = (𝑥𝐼 ↦ ( 0𝑥)))
6250, 52, 613eqtr4d 2775 . 2 (𝜑 → (𝑁 + 𝐹) = 0 )
6323, 62jca 511 1 (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  cmpt 5191  ran crn 5642  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Xscprds 17415  Grpcgrp 18872  invgcminusg 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876
This theorem is referenced by:  prdsgrpd  18989  prdsinvgd  18990
  Copyright terms: Public domain W3C validator