Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funbrafv | Structured version Visualization version GIF version |
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6876. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
funbrafv | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6501 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | releldm 5885 | . . . . . . . 8 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
3 | funbrafvb 45007 | . . . . . . . . . 10 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹'''𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | |
4 | 3 | biimprd 247 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
5 | 4 | expcom 414 | . . . . . . . 8 ⊢ (𝐴 ∈ dom 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
6 | 2, 5 | syl 17 | . . . . . . 7 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
7 | 6 | ex 413 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐴𝐹𝐵 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))) |
8 | 7 | com14 96 | . . . . 5 ⊢ (𝐴𝐹𝐵 → (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵)))) |
9 | 8 | pm2.43i 52 | . . . 4 ⊢ (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵))) |
10 | 9 | com13 88 | . . 3 ⊢ (Rel 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
11 | 1, 10 | syl 17 | . 2 ⊢ (Fun 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
12 | 11 | pm2.43i 52 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5092 dom cdm 5620 Rel wrel 5625 Fun wfun 6473 '''cafv 44968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-res 5632 df-iota 6431 df-fun 6481 df-fn 6482 df-fv 6487 df-aiota 44936 df-dfat 44970 df-afv 44971 |
This theorem is referenced by: afvelima 45018 |
Copyright terms: Public domain | W3C validator |