Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbrafv Structured version   Visualization version   GIF version

Theorem funbrafv 47197
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6870. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
funbrafv (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))

Proof of Theorem funbrafv
StepHypRef Expression
1 funrel 6498 . . 3 (Fun 𝐹 → Rel 𝐹)
2 releldm 5883 . . . . . . . 8 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
3 funbrafvb 47195 . . . . . . . . . 10 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹'''𝐴) = 𝐵𝐴𝐹𝐵))
43biimprd 248 . . . . . . . . 9 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))
54expcom 413 . . . . . . . 8 (𝐴 ∈ dom 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
62, 5syl 17 . . . . . . 7 ((Rel 𝐹𝐴𝐹𝐵) → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
76ex 412 . . . . . 6 (Rel 𝐹 → (𝐴𝐹𝐵 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))))
87com14 96 . . . . 5 (𝐴𝐹𝐵 → (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵))))
98pm2.43i 52 . . . 4 (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵)))
109com13 88 . . 3 (Rel 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
111, 10syl 17 . 2 (Fun 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
1211pm2.43i 52 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  dom cdm 5614  Rel wrel 5619  Fun wfun 6475  '''cafv 47156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-aiota 47124  df-dfat 47158  df-afv 47159
This theorem is referenced by:  afvelima  47206
  Copyright terms: Public domain W3C validator