| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funbrafv | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6870. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| funbrafv | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6498 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | releldm 5883 | . . . . . . . 8 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
| 3 | funbrafvb 47195 | . . . . . . . . . 10 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹'''𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | |
| 4 | 3 | biimprd 248 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
| 5 | 4 | expcom 413 | . . . . . . . 8 ⊢ (𝐴 ∈ dom 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
| 6 | 2, 5 | syl 17 | . . . . . . 7 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
| 7 | 6 | ex 412 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐴𝐹𝐵 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))) |
| 8 | 7 | com14 96 | . . . . 5 ⊢ (𝐴𝐹𝐵 → (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵)))) |
| 9 | 8 | pm2.43i 52 | . . . 4 ⊢ (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵))) |
| 10 | 9 | com13 88 | . . 3 ⊢ (Rel 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
| 11 | 1, 10 | syl 17 | . 2 ⊢ (Fun 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
| 12 | 11 | pm2.43i 52 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 dom cdm 5614 Rel wrel 5619 Fun wfun 6475 '''cafv 47156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-aiota 47124 df-dfat 47158 df-afv 47159 |
| This theorem is referenced by: afvelima 47206 |
| Copyright terms: Public domain | W3C validator |