Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbrafv Structured version   Visualization version   GIF version

Theorem funbrafv 47142
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6871. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
funbrafv (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))

Proof of Theorem funbrafv
StepHypRef Expression
1 funrel 6499 . . 3 (Fun 𝐹 → Rel 𝐹)
2 releldm 5886 . . . . . . . 8 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
3 funbrafvb 47140 . . . . . . . . . 10 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹'''𝐴) = 𝐵𝐴𝐹𝐵))
43biimprd 248 . . . . . . . . 9 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))
54expcom 413 . . . . . . . 8 (𝐴 ∈ dom 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
62, 5syl 17 . . . . . . 7 ((Rel 𝐹𝐴𝐹𝐵) → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
76ex 412 . . . . . 6 (Rel 𝐹 → (𝐴𝐹𝐵 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))))
87com14 96 . . . . 5 (𝐴𝐹𝐵 → (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵))))
98pm2.43i 52 . . . 4 (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵)))
109com13 88 . . 3 (Rel 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
111, 10syl 17 . 2 (Fun 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
1211pm2.43i 52 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  dom cdm 5619  Rel wrel 5624  Fun wfun 6476  '''cafv 47101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-aiota 47069  df-dfat 47103  df-afv 47104
This theorem is referenced by:  afvelima  47151
  Copyright terms: Public domain W3C validator