Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbrafv Structured version   Visualization version   GIF version

Theorem funbrafv 47073
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6971. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
funbrafv (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))

Proof of Theorem funbrafv
StepHypRef Expression
1 funrel 6595 . . 3 (Fun 𝐹 → Rel 𝐹)
2 releldm 5969 . . . . . . . 8 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
3 funbrafvb 47071 . . . . . . . . . 10 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹'''𝐴) = 𝐵𝐴𝐹𝐵))
43biimprd 248 . . . . . . . . 9 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))
54expcom 413 . . . . . . . 8 (𝐴 ∈ dom 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
62, 5syl 17 . . . . . . 7 ((Rel 𝐹𝐴𝐹𝐵) → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
76ex 412 . . . . . 6 (Rel 𝐹 → (𝐴𝐹𝐵 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))))
87com14 96 . . . . 5 (𝐴𝐹𝐵 → (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵))))
98pm2.43i 52 . . . 4 (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵)))
109com13 88 . . 3 (Rel 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
111, 10syl 17 . 2 (Fun 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))
1211pm2.43i 52 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  dom cdm 5700  Rel wrel 5705  Fun wfun 6567  '''cafv 47032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-aiota 47000  df-dfat 47034  df-afv 47035
This theorem is referenced by:  afvelima  47082
  Copyright terms: Public domain W3C validator