![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funbrafv | Structured version Visualization version GIF version |
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6943. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
funbrafv | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6566 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | releldm 5944 | . . . . . . . 8 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
3 | funbrafvb 45864 | . . . . . . . . . 10 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹'''𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | |
4 | 3 | biimprd 247 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
5 | 4 | expcom 415 | . . . . . . . 8 ⊢ (𝐴 ∈ dom 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
6 | 2, 5 | syl 17 | . . . . . . 7 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
7 | 6 | ex 414 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐴𝐹𝐵 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)))) |
8 | 7 | com14 96 | . . . . 5 ⊢ (𝐴𝐹𝐵 → (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵)))) |
9 | 8 | pm2.43i 52 | . . . 4 ⊢ (𝐴𝐹𝐵 → (Fun 𝐹 → (Rel 𝐹 → (𝐹'''𝐴) = 𝐵))) |
10 | 9 | com13 88 | . . 3 ⊢ (Rel 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
11 | 1, 10 | syl 17 | . 2 ⊢ (Fun 𝐹 → (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵))) |
12 | 11 | pm2.43i 52 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 dom cdm 5677 Rel wrel 5682 Fun wfun 6538 '''cafv 45825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 df-aiota 45793 df-dfat 45827 df-afv 45828 |
This theorem is referenced by: afvelima 45875 |
Copyright terms: Public domain | W3C validator |