MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem2 Structured version   Visualization version   GIF version

Theorem dvcnvrelem2 24218
Description: Lemma for dvcnvre 24219. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
dvcnvre.t 𝑇 = (topGen‘ran (,))
dvcnvre.j 𝐽 = (TopOpen‘ℂfld)
dvcnvre.m 𝑀 = (𝐽t 𝑋)
dvcnvre.n 𝑁 = (𝐽t 𝑌)
Assertion
Ref Expression
dvcnvrelem2 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))

Proof of Theorem dvcnvrelem2
StepHypRef Expression
1 dvcnvre.t . . . . . 6 𝑇 = (topGen‘ran (,))
2 retop 22973 . . . . . 6 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2855 . . . . 5 𝑇 ∈ Top
43a1i 11 . . . 4 (𝜑𝑇 ∈ Top)
5 dvcnvre.1 . . . . . 6 (𝜑𝐹:𝑋1-1-onto𝑌)
6 f1ofo 6398 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
7 forn 6369 . . . . . 6 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
85, 6, 73syl 18 . . . . 5 (𝜑 → ran 𝐹 = 𝑌)
9 dvcnvre.f . . . . . 6 (𝜑𝐹 ∈ (𝑋cn→ℝ))
10 cncff 23104 . . . . . 6 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
11 frn 6297 . . . . . 6 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
129, 10, 113syl 18 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ)
138, 12eqsstr3d 3859 . . . 4 (𝜑𝑌 ⊆ ℝ)
14 imassrn 5731 . . . . 5 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ran 𝐹
1514, 8syl5sseq 3872 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌)
16 uniretop 22974 . . . . . 6 ℝ = (topGen‘ran (,))
171unieqi 4680 . . . . . 6 𝑇 = (topGen‘ran (,))
1816, 17eqtr4i 2805 . . . . 5 ℝ = 𝑇
1918ntrss 21267 . . . 4 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
204, 13, 15, 19syl3anc 1439 . . 3 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
21 dvcnvre.d . . . . 5 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
22 dvcnvre.z . . . . 5 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
23 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
24 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
25 dvcnvre.s . . . . 5 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
269, 21, 22, 5, 23, 24, 25dvcnvrelem1 24217 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
271fveq2i 6449 . . . . 5 (int‘𝑇) = (int‘(topGen‘ran (,)))
2827fveq1i 6447 . . . 4 ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
2926, 28syl6eleqr 2870 . . 3 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
3020, 29sseldd 3822 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘𝑌))
31 f1ocnv 6403 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
32 f1of 6391 . . . . . . 7 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
335, 31, 323syl 18 . . . . . 6 (𝜑𝐹:𝑌𝑋)
34 ffun 6294 . . . . . 6 (𝐹:𝑌𝑋 → Fun 𝐹)
35 funcnvres 6212 . . . . . 6 (Fun 𝐹(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
3633, 34, 353syl 18 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
37 dvbsss 24103 . . . . . . . . . . 11 dom (ℝ D 𝐹) ⊆ ℝ
3821, 37syl6eqssr 3875 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
39 ax-resscn 10329 . . . . . . . . . 10 ℝ ⊆ ℂ
4038, 39syl6ss 3833 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
41 cncfss 23110 . . . . . . . . 9 ((((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
4225, 40, 41syl2anc 579 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
43 f1of1 6390 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
445, 43syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
45 f1ores 6405 . . . . . . . . . 10 ((𝐹:𝑋1-1𝑌 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
4644, 25, 45syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
47 dvcnvre.j . . . . . . . . . . . . . . 15 𝐽 = (TopOpen‘ℂfld)
4847tgioo2 23014 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (𝐽t ℝ)
491, 48eqtri 2802 . . . . . . . . . . . . 13 𝑇 = (𝐽t ℝ)
5049oveq1i 6932 . . . . . . . . . . . 12 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅)))
5147cnfldtop 22995 . . . . . . . . . . . . . 14 𝐽 ∈ Top
5251a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
5325, 38sstrd 3831 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
54 reex 10363 . . . . . . . . . . . . . 14 ℝ ∈ V
5554a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
56 restabs 21377 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5752, 53, 55, 56syl3anc 1439 . . . . . . . . . . . 12 (𝜑 → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5850, 57syl5eq 2826 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5938, 23sseldd 3822 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
6024rpred 12181 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
6159, 60resubcld 10803 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ)
6259, 60readdcld 10406 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
63 eqid 2778 . . . . . . . . . . . . 13 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅)))
641, 63icccmp 23036 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6561, 62, 64syl2anc 579 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6658, 65eqeltrrd 2860 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
67 f1of 6391 . . . . . . . . . . . 12 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6846, 67syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6912, 39syl6ss 3833 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ ℂ)
7014, 69syl5ss 3832 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ)
71 rescncf 23108 . . . . . . . . . . . . 13 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
7225, 9, 71sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
73 cncffvrn 23109 . . . . . . . . . . . 12 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7470, 72, 73syl2anc 579 . . . . . . . . . . 11 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7568, 74mpbird 249 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
76 eqid 2778 . . . . . . . . . . 11 (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅)))
7747, 76cncfcnvcn 23132 . . . . . . . . . 10 (((𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7866, 75, 77syl2anc 579 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7946, 78mpbid 224 . . . . . . . 8 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))))
8042, 79sseldd 3822 . . . . . . 7 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
81 eqid 2778 . . . . . . . . 9 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
82 dvcnvre.m . . . . . . . . 9 𝑀 = (𝐽t 𝑋)
8347, 81, 82cncfcn 23120 . . . . . . . 8 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8470, 40, 83syl2anc 579 . . . . . . 7 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8580, 84eleqtrd 2861 . . . . . 6 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8659, 24ltsubrpd 12213 . . . . . . . . . 10 (𝜑 → (𝐶𝑅) < 𝐶)
8761, 59, 86ltled 10524 . . . . . . . . 9 (𝜑 → (𝐶𝑅) ≤ 𝐶)
8859, 24ltaddrpd 12214 . . . . . . . . . 10 (𝜑𝐶 < (𝐶 + 𝑅))
8959, 62, 88ltled 10524 . . . . . . . . 9 (𝜑𝐶 ≤ (𝐶 + 𝑅))
90 elicc2 12550 . . . . . . . . . 10 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
9161, 62, 90syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
9259, 87, 89, 91mpbir3and 1399 . . . . . . . 8 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
93 ffun 6294 . . . . . . . . . 10 (𝐹:𝑋⟶ℝ → Fun 𝐹)
949, 10, 933syl 18 . . . . . . . . 9 (𝜑 → Fun 𝐹)
95 fdm 6299 . . . . . . . . . . 11 (𝐹:𝑋⟶ℝ → dom 𝐹 = 𝑋)
969, 10, 953syl 18 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑋)
9725, 96sseqtr4d 3861 . . . . . . . . 9 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
98 funfvima2 6765 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9994, 97, 98syl2anc 579 . . . . . . . 8 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
10092, 99mpd 15 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
10147cnfldtopon 22994 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
102 resttopon 21373 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ) → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
103101, 70, 102sylancr 581 . . . . . . . 8 (𝜑 → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
104 toponuni 21126 . . . . . . . 8 ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
105103, 104syl 17 . . . . . . 7 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
106100, 105eleqtrd 2861 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
107 eqid 2778 . . . . . . 7 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
108107cncnpi 21490 . . . . . 6 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀) ∧ (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
10985, 106, 108syl2anc 579 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
11036, 109eqeltrrd 2860 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
111 dvcnvre.n . . . . . . . 8 𝑁 = (𝐽t 𝑌)
112111oveq1i 6932 . . . . . . 7 (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
113 ssexg 5041 . . . . . . . . 9 ((𝑌 ⊆ ℝ ∧ ℝ ∈ V) → 𝑌 ∈ V)
11413, 54, 113sylancl 580 . . . . . . . 8 (𝜑𝑌 ∈ V)
115 restabs 21377 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
11652, 15, 114, 115syl3anc 1439 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
117112, 116syl5eq 2826 . . . . . 6 (𝜑 → (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
118117oveq1d 6937 . . . . 5 (𝜑 → ((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀))
119118fveq1d 6448 . . . 4 (𝜑 → (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)) = (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
120110, 119eleqtrrd 2862 . . 3 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
12113, 39syl6ss 3833 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
122 resttopon 21373 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
123101, 121, 122sylancr 581 . . . . . 6 (𝜑 → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
124111, 123syl5eqel 2863 . . . . 5 (𝜑𝑁 ∈ (TopOn‘𝑌))
125 topontop 21125 . . . . 5 (𝑁 ∈ (TopOn‘𝑌) → 𝑁 ∈ Top)
126124, 125syl 17 . . . 4 (𝜑𝑁 ∈ Top)
127 toponuni 21126 . . . . . 6 (𝑁 ∈ (TopOn‘𝑌) → 𝑌 = 𝑁)
128124, 127syl 17 . . . . 5 (𝜑𝑌 = 𝑁)
12915, 128sseqtrd 3860 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁)
13015, 13sstrd 3831 . . . . . . . . 9 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℝ)
131 difssd 3961 . . . . . . . . 9 (𝜑 → (ℝ ∖ 𝑌) ⊆ ℝ)
132130, 131unssd 4012 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ)
133 ssun1 3999 . . . . . . . . 9 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))
134133a1i 11 . . . . . . . 8 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)))
13518ntrss 21267 . . . . . . . 8 ((𝑇 ∈ Top ∧ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
1364, 132, 134, 135syl3anc 1439 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
137136, 29sseldd 3822 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
138 f1of 6391 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
1395, 138syl 17 . . . . . . 7 (𝜑𝐹:𝑋𝑌)
140139, 23ffvelrnd 6624 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ 𝑌)
141137, 140elind 4021 . . . . 5 (𝜑 → (𝐹𝐶) ∈ (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
142 eqid 2778 . . . . . . . 8 (𝑇t 𝑌) = (𝑇t 𝑌)
14318, 142restntr 21394 . . . . . . 7 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
1444, 13, 15, 143syl3anc 1439 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
145 restabs 21377 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14652, 13, 55, 145syl3anc 1439 . . . . . . . . 9 (𝜑 → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14749oveq1i 6932 . . . . . . . . 9 (𝑇t 𝑌) = ((𝐽t ℝ) ↾t 𝑌)
148146, 147, 1113eqtr4g 2839 . . . . . . . 8 (𝜑 → (𝑇t 𝑌) = 𝑁)
149148fveq2d 6450 . . . . . . 7 (𝜑 → (int‘(𝑇t 𝑌)) = (int‘𝑁))
150149fveq1d 6448 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
151144, 150eqtr3d 2816 . . . . 5 (𝜑 → (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
152141, 151eleqtrd 2861 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
153128feq2d 6277 . . . . . 6 (𝜑 → (𝐹:𝑌𝑋𝐹: 𝑁𝑋))
15433, 153mpbid 224 . . . . 5 (𝜑𝐹: 𝑁𝑋)
155 resttopon 21373 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
156101, 40, 155sylancr 581 . . . . . . 7 (𝜑 → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
15782, 156syl5eqel 2863 . . . . . 6 (𝜑𝑀 ∈ (TopOn‘𝑋))
158 toponuni 21126 . . . . . 6 (𝑀 ∈ (TopOn‘𝑋) → 𝑋 = 𝑀)
159 feq3 6274 . . . . . 6 (𝑋 = 𝑀 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
160157, 158, 1593syl 18 . . . . 5 (𝜑 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
161154, 160mpbid 224 . . . 4 (𝜑𝐹: 𝑁 𝑀)
162 eqid 2778 . . . . 5 𝑁 = 𝑁
163 eqid 2778 . . . . 5 𝑀 = 𝑀
164162, 163cnprest 21501 . . . 4 (((𝑁 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁) ∧ ((𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ 𝐹: 𝑁 𝑀)) → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
165126, 129, 152, 161, 164syl22anc 829 . . 3 (𝜑 → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
166120, 165mpbird 249 . 2 (𝜑𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)))
16730, 166jca 507 1 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398  cdif 3789  cun 3790  cin 3791  wss 3792   cuni 4671   class class class wbr 4886  ccnv 5354  dom cdm 5355  ran crn 5356  cres 5357  cima 5358  Fun wfun 6129  wf 6131  1-1wf1 6132  ontowfo 6133  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272   + caddc 10275  cle 10412  cmin 10606  +crp 12137  (,)cioo 12487  [,]cicc 12490  t crest 16467  TopOpenctopn 16468  topGenctg 16484  fldccnfld 20142  Topctop 21105  TopOnctopon 21122  intcnt 21229   Cn ccn 21436   CnP ccnp 21437  Compccmp 21598  cnccncf 23087   D cdv 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068
This theorem is referenced by:  dvcnvre  24219
  Copyright terms: Public domain W3C validator