MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem2 Structured version   Visualization version   GIF version

Theorem dvcnvrelem2 26072
Description: Lemma for dvcnvre 26073. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
dvcnvre.t 𝑇 = (topGen‘ran (,))
dvcnvre.j 𝐽 = (TopOpen‘ℂfld)
dvcnvre.m 𝑀 = (𝐽t 𝑋)
dvcnvre.n 𝑁 = (𝐽t 𝑌)
Assertion
Ref Expression
dvcnvrelem2 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))

Proof of Theorem dvcnvrelem2
StepHypRef Expression
1 dvcnvre.t . . . . 5 𝑇 = (topGen‘ran (,))
2 retop 24798 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2835 . . . 4 𝑇 ∈ Top
4 dvcnvre.1 . . . . . 6 (𝜑𝐹:𝑋1-1-onto𝑌)
5 f1ofo 6856 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
6 forn 6824 . . . . . 6 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
74, 5, 63syl 18 . . . . 5 (𝜑 → ran 𝐹 = 𝑌)
8 dvcnvre.f . . . . . 6 (𝜑𝐹 ∈ (𝑋cn→ℝ))
9 cncff 24933 . . . . . 6 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
10 frn 6744 . . . . . 6 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
118, 9, 103syl 18 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ)
127, 11eqsstrrd 4035 . . . 4 (𝜑𝑌 ⊆ ℝ)
13 imassrn 6091 . . . . 5 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ran 𝐹
1413, 7sseqtrid 4048 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌)
15 uniretop 24799 . . . . . 6 ℝ = (topGen‘ran (,))
161unieqi 4924 . . . . . 6 𝑇 = (topGen‘ran (,))
1715, 16eqtr4i 2766 . . . . 5 ℝ = 𝑇
1817ntrss 23079 . . . 4 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
193, 12, 14, 18mp3an2i 1465 . . 3 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
20 dvcnvre.d . . . . 5 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
21 dvcnvre.z . . . . 5 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
22 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
23 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
24 dvcnvre.s . . . . 5 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
258, 20, 21, 4, 22, 23, 24dvcnvrelem1 26071 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
261fveq2i 6910 . . . . 5 (int‘𝑇) = (int‘(topGen‘ran (,)))
2726fveq1i 6908 . . . 4 ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
2825, 27eleqtrrdi 2850 . . 3 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
2919, 28sseldd 3996 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘𝑌))
30 f1ocnv 6861 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
31 f1of 6849 . . . . . . 7 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
324, 30, 313syl 18 . . . . . 6 (𝜑𝐹:𝑌𝑋)
33 ffun 6740 . . . . . 6 (𝐹:𝑌𝑋 → Fun 𝐹)
34 funcnvres 6646 . . . . . 6 (Fun 𝐹(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
3532, 33, 343syl 18 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
36 dvbsss 25952 . . . . . . . . . . 11 dom (ℝ D 𝐹) ⊆ ℝ
3720, 36eqsstrrdi 4051 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
38 ax-resscn 11210 . . . . . . . . . 10 ℝ ⊆ ℂ
3937, 38sstrdi 4008 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
40 cncfss 24939 . . . . . . . . 9 ((((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
4124, 39, 40syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
42 f1of1 6848 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
434, 42syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
44 f1ores 6863 . . . . . . . . . 10 ((𝐹:𝑋1-1𝑌 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
4543, 24, 44syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
46 dvcnvre.j . . . . . . . . . . . . . . 15 𝐽 = (TopOpen‘ℂfld)
4746tgioo2 24839 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (𝐽t ℝ)
481, 47eqtri 2763 . . . . . . . . . . . . 13 𝑇 = (𝐽t ℝ)
4948oveq1i 7441 . . . . . . . . . . . 12 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅)))
5046cnfldtop 24820 . . . . . . . . . . . . 13 𝐽 ∈ Top
5124, 37sstrd 4006 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
52 reex 11244 . . . . . . . . . . . . . 14 ℝ ∈ V
5352a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
54 restabs 23189 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5550, 51, 53, 54mp3an2i 1465 . . . . . . . . . . . 12 (𝜑 → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5649, 55eqtrid 2787 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5737, 22sseldd 3996 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
5823rpred 13075 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
5957, 58resubcld 11689 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ)
6057, 58readdcld 11288 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
61 eqid 2735 . . . . . . . . . . . . 13 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅)))
621, 61icccmp 24861 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6359, 60, 62syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6456, 63eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
65 f1of 6849 . . . . . . . . . . . 12 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6645, 65syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6711, 38sstrdi 4008 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ ℂ)
6813, 67sstrid 4007 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ)
69 rescncf 24937 . . . . . . . . . . . . 13 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
7024, 8, 69sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
71 cncfcdm 24938 . . . . . . . . . . . 12 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7268, 70, 71syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7366, 72mpbird 257 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
74 eqid 2735 . . . . . . . . . . 11 (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅)))
7546, 74cncfcnvcn 24966 . . . . . . . . . 10 (((𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7664, 73, 75syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7745, 76mpbid 232 . . . . . . . 8 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))))
7841, 77sseldd 3996 . . . . . . 7 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
79 eqid 2735 . . . . . . . . 9 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
80 dvcnvre.m . . . . . . . . 9 𝑀 = (𝐽t 𝑋)
8146, 79, 80cncfcn 24950 . . . . . . . 8 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8268, 39, 81syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8378, 82eleqtrd 2841 . . . . . 6 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8457, 23ltsubrpd 13107 . . . . . . . . . 10 (𝜑 → (𝐶𝑅) < 𝐶)
8559, 57, 84ltled 11407 . . . . . . . . 9 (𝜑 → (𝐶𝑅) ≤ 𝐶)
8657, 23ltaddrpd 13108 . . . . . . . . . 10 (𝜑𝐶 < (𝐶 + 𝑅))
8757, 60, 86ltled 11407 . . . . . . . . 9 (𝜑𝐶 ≤ (𝐶 + 𝑅))
88 elicc2 13449 . . . . . . . . . 10 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
8959, 60, 88syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
9057, 85, 87, 89mpbir3and 1341 . . . . . . . 8 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
91 ffun 6740 . . . . . . . . . 10 (𝐹:𝑋⟶ℝ → Fun 𝐹)
928, 9, 913syl 18 . . . . . . . . 9 (𝜑 → Fun 𝐹)
93 fdm 6746 . . . . . . . . . . 11 (𝐹:𝑋⟶ℝ → dom 𝐹 = 𝑋)
948, 9, 933syl 18 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑋)
9524, 94sseqtrrd 4037 . . . . . . . . 9 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
96 funfvima2 7251 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9792, 95, 96syl2anc 584 . . . . . . . 8 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9890, 97mpd 15 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
9946cnfldtopon 24819 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
100 resttopon 23185 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ) → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
10199, 68, 100sylancr 587 . . . . . . . 8 (𝜑 → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
102 toponuni 22936 . . . . . . . 8 ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
103101, 102syl 17 . . . . . . 7 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
10498, 103eleqtrd 2841 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
105 eqid 2735 . . . . . . 7 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
106105cncnpi 23302 . . . . . 6 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀) ∧ (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
10783, 104, 106syl2anc 584 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
10835, 107eqeltrrd 2840 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
109 dvcnvre.n . . . . . . . 8 𝑁 = (𝐽t 𝑌)
110109oveq1i 7441 . . . . . . 7 (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
111 ssexg 5329 . . . . . . . . 9 ((𝑌 ⊆ ℝ ∧ ℝ ∈ V) → 𝑌 ∈ V)
11212, 52, 111sylancl 586 . . . . . . . 8 (𝜑𝑌 ∈ V)
113 restabs 23189 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
11450, 14, 112, 113mp3an2i 1465 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
115110, 114eqtrid 2787 . . . . . 6 (𝜑 → (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
116115oveq1d 7446 . . . . 5 (𝜑 → ((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀))
117116fveq1d 6909 . . . 4 (𝜑 → (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)) = (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
118108, 117eleqtrrd 2842 . . 3 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
11912, 38sstrdi 4008 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
120 resttopon 23185 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
12199, 119, 120sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
122109, 121eqeltrid 2843 . . . . 5 (𝜑𝑁 ∈ (TopOn‘𝑌))
123 topontop 22935 . . . . 5 (𝑁 ∈ (TopOn‘𝑌) → 𝑁 ∈ Top)
124122, 123syl 17 . . . 4 (𝜑𝑁 ∈ Top)
125 toponuni 22936 . . . . . 6 (𝑁 ∈ (TopOn‘𝑌) → 𝑌 = 𝑁)
126122, 125syl 17 . . . . 5 (𝜑𝑌 = 𝑁)
12714, 126sseqtrd 4036 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁)
12814, 12sstrd 4006 . . . . . . . . 9 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℝ)
129 difssd 4147 . . . . . . . . 9 (𝜑 → (ℝ ∖ 𝑌) ⊆ ℝ)
130128, 129unssd 4202 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ)
131 ssun1 4188 . . . . . . . . 9 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))
132131a1i 11 . . . . . . . 8 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)))
13317ntrss 23079 . . . . . . . 8 ((𝑇 ∈ Top ∧ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
1343, 130, 132, 133mp3an2i 1465 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
135134, 28sseldd 3996 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
136 f1of 6849 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
1374, 136syl 17 . . . . . . 7 (𝜑𝐹:𝑋𝑌)
138137, 22ffvelcdmd 7105 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ 𝑌)
139135, 138elind 4210 . . . . 5 (𝜑 → (𝐹𝐶) ∈ (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
140 eqid 2735 . . . . . . . 8 (𝑇t 𝑌) = (𝑇t 𝑌)
14117, 140restntr 23206 . . . . . . 7 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
1423, 12, 14, 141mp3an2i 1465 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
143 restabs 23189 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14450, 12, 53, 143mp3an2i 1465 . . . . . . . . 9 (𝜑 → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14548oveq1i 7441 . . . . . . . . 9 (𝑇t 𝑌) = ((𝐽t ℝ) ↾t 𝑌)
146144, 145, 1093eqtr4g 2800 . . . . . . . 8 (𝜑 → (𝑇t 𝑌) = 𝑁)
147146fveq2d 6911 . . . . . . 7 (𝜑 → (int‘(𝑇t 𝑌)) = (int‘𝑁))
148147fveq1d 6909 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
149142, 148eqtr3d 2777 . . . . 5 (𝜑 → (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
150139, 149eleqtrd 2841 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
151126feq2d 6723 . . . . . 6 (𝜑 → (𝐹:𝑌𝑋𝐹: 𝑁𝑋))
15232, 151mpbid 232 . . . . 5 (𝜑𝐹: 𝑁𝑋)
153 resttopon 23185 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
15499, 39, 153sylancr 587 . . . . . . 7 (𝜑 → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
15580, 154eqeltrid 2843 . . . . . 6 (𝜑𝑀 ∈ (TopOn‘𝑋))
156 toponuni 22936 . . . . . 6 (𝑀 ∈ (TopOn‘𝑋) → 𝑋 = 𝑀)
157 feq3 6719 . . . . . 6 (𝑋 = 𝑀 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
158155, 156, 1573syl 18 . . . . 5 (𝜑 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
159152, 158mpbid 232 . . . 4 (𝜑𝐹: 𝑁 𝑀)
160 eqid 2735 . . . . 5 𝑁 = 𝑁
161 eqid 2735 . . . . 5 𝑀 = 𝑀
162160, 161cnprest 23313 . . . 4 (((𝑁 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁) ∧ ((𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ 𝐹: 𝑁 𝑀)) → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
163124, 127, 150, 159, 162syl22anc 839 . . 3 (𝜑 → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
164118, 163mpbird 257 . 2 (𝜑𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)))
16529, 164jca 511 1 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963   cuni 4912   class class class wbr 5148  ccnv 5688  dom cdm 5689  ran crn 5690  cres 5691  cima 5692  Fun wfun 6557  wf 6559  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156  cle 11294  cmin 11490  +crp 13032  (,)cioo 13384  [,]cicc 13387  t crest 17467  TopOpenctopn 17468  topGenctg 17484  fldccnfld 21382  Topctop 22915  TopOnctopon 22932  intcnt 23041   Cn ccn 23248   CnP ccnp 23249  Compccmp 23410  cnccncf 24916   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  dvcnvre  26073
  Copyright terms: Public domain W3C validator