MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem2 Structured version   Visualization version   GIF version

Theorem dvcnvrelem2 25950
Description: Lemma for dvcnvre 25951. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
dvcnvre.t 𝑇 = (topGen‘ran (,))
dvcnvre.j 𝐽 = (TopOpen‘ℂfld)
dvcnvre.m 𝑀 = (𝐽t 𝑋)
dvcnvre.n 𝑁 = (𝐽t 𝑌)
Assertion
Ref Expression
dvcnvrelem2 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))

Proof of Theorem dvcnvrelem2
StepHypRef Expression
1 dvcnvre.t . . . . 5 𝑇 = (topGen‘ran (,))
2 retop 24676 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2827 . . . 4 𝑇 ∈ Top
4 dvcnvre.1 . . . . . 6 (𝜑𝐹:𝑋1-1-onto𝑌)
5 f1ofo 6770 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
6 forn 6738 . . . . . 6 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
74, 5, 63syl 18 . . . . 5 (𝜑 → ran 𝐹 = 𝑌)
8 dvcnvre.f . . . . . 6 (𝜑𝐹 ∈ (𝑋cn→ℝ))
9 cncff 24813 . . . . . 6 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
10 frn 6658 . . . . . 6 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
118, 9, 103syl 18 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ)
127, 11eqsstrrd 3965 . . . 4 (𝜑𝑌 ⊆ ℝ)
13 imassrn 6019 . . . . 5 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ran 𝐹
1413, 7sseqtrid 3972 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌)
15 uniretop 24677 . . . . . 6 ℝ = (topGen‘ran (,))
161unieqi 4868 . . . . . 6 𝑇 = (topGen‘ran (,))
1715, 16eqtr4i 2757 . . . . 5 ℝ = 𝑇
1817ntrss 22970 . . . 4 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
193, 12, 14, 18mp3an2i 1468 . . 3 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
20 dvcnvre.d . . . . 5 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
21 dvcnvre.z . . . . 5 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
22 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
23 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
24 dvcnvre.s . . . . 5 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
258, 20, 21, 4, 22, 23, 24dvcnvrelem1 25949 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
261fveq2i 6825 . . . . 5 (int‘𝑇) = (int‘(topGen‘ran (,)))
2726fveq1i 6823 . . . 4 ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
2825, 27eleqtrrdi 2842 . . 3 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
2919, 28sseldd 3930 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘𝑌))
30 f1ocnv 6775 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
31 f1of 6763 . . . . . . 7 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
324, 30, 313syl 18 . . . . . 6 (𝜑𝐹:𝑌𝑋)
33 ffun 6654 . . . . . 6 (𝐹:𝑌𝑋 → Fun 𝐹)
34 funcnvres 6559 . . . . . 6 (Fun 𝐹(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
3532, 33, 343syl 18 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
36 dvbsss 25830 . . . . . . . . . . 11 dom (ℝ D 𝐹) ⊆ ℝ
3720, 36eqsstrrdi 3975 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
38 ax-resscn 11063 . . . . . . . . . 10 ℝ ⊆ ℂ
3937, 38sstrdi 3942 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
40 cncfss 24819 . . . . . . . . 9 ((((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
4124, 39, 40syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
42 f1of1 6762 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
434, 42syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
44 f1ores 6777 . . . . . . . . . 10 ((𝐹:𝑋1-1𝑌 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
4543, 24, 44syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
46 dvcnvre.j . . . . . . . . . . . . . . 15 𝐽 = (TopOpen‘ℂfld)
4746tgioo2 24718 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (𝐽t ℝ)
481, 47eqtri 2754 . . . . . . . . . . . . 13 𝑇 = (𝐽t ℝ)
4948oveq1i 7356 . . . . . . . . . . . 12 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅)))
5046cnfldtop 24698 . . . . . . . . . . . . 13 𝐽 ∈ Top
5124, 37sstrd 3940 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
52 reex 11097 . . . . . . . . . . . . . 14 ℝ ∈ V
5352a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
54 restabs 23080 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5550, 51, 53, 54mp3an2i 1468 . . . . . . . . . . . 12 (𝜑 → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5649, 55eqtrid 2778 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5737, 22sseldd 3930 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
5823rpred 12934 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
5957, 58resubcld 11545 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ)
6057, 58readdcld 11141 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
61 eqid 2731 . . . . . . . . . . . . 13 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅)))
621, 61icccmp 24741 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6359, 60, 62syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6456, 63eqeltrrd 2832 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
65 f1of 6763 . . . . . . . . . . . 12 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6645, 65syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6711, 38sstrdi 3942 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ ℂ)
6813, 67sstrid 3941 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ)
69 rescncf 24817 . . . . . . . . . . . . 13 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
7024, 8, 69sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
71 cncfcdm 24818 . . . . . . . . . . . 12 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7268, 70, 71syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7366, 72mpbird 257 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
74 eqid 2731 . . . . . . . . . . 11 (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅)))
7546, 74cncfcnvcn 24846 . . . . . . . . . 10 (((𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7664, 73, 75syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7745, 76mpbid 232 . . . . . . . 8 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))))
7841, 77sseldd 3930 . . . . . . 7 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
79 eqid 2731 . . . . . . . . 9 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
80 dvcnvre.m . . . . . . . . 9 𝑀 = (𝐽t 𝑋)
8146, 79, 80cncfcn 24830 . . . . . . . 8 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8268, 39, 81syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8378, 82eleqtrd 2833 . . . . . 6 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8457, 23ltsubrpd 12966 . . . . . . . . . 10 (𝜑 → (𝐶𝑅) < 𝐶)
8559, 57, 84ltled 11261 . . . . . . . . 9 (𝜑 → (𝐶𝑅) ≤ 𝐶)
8657, 23ltaddrpd 12967 . . . . . . . . . 10 (𝜑𝐶 < (𝐶 + 𝑅))
8757, 60, 86ltled 11261 . . . . . . . . 9 (𝜑𝐶 ≤ (𝐶 + 𝑅))
88 elicc2 13311 . . . . . . . . . 10 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
8959, 60, 88syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
9057, 85, 87, 89mpbir3and 1343 . . . . . . . 8 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
91 ffun 6654 . . . . . . . . . 10 (𝐹:𝑋⟶ℝ → Fun 𝐹)
928, 9, 913syl 18 . . . . . . . . 9 (𝜑 → Fun 𝐹)
93 fdm 6660 . . . . . . . . . . 11 (𝐹:𝑋⟶ℝ → dom 𝐹 = 𝑋)
948, 9, 933syl 18 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑋)
9524, 94sseqtrrd 3967 . . . . . . . . 9 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
96 funfvima2 7165 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9792, 95, 96syl2anc 584 . . . . . . . 8 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9890, 97mpd 15 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
9946cnfldtopon 24697 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
100 resttopon 23076 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ) → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
10199, 68, 100sylancr 587 . . . . . . . 8 (𝜑 → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
102 toponuni 22829 . . . . . . . 8 ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
103101, 102syl 17 . . . . . . 7 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
10498, 103eleqtrd 2833 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
105 eqid 2731 . . . . . . 7 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
106105cncnpi 23193 . . . . . 6 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀) ∧ (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
10783, 104, 106syl2anc 584 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
10835, 107eqeltrrd 2832 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
109 dvcnvre.n . . . . . . . 8 𝑁 = (𝐽t 𝑌)
110109oveq1i 7356 . . . . . . 7 (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
111 ssexg 5259 . . . . . . . . 9 ((𝑌 ⊆ ℝ ∧ ℝ ∈ V) → 𝑌 ∈ V)
11212, 52, 111sylancl 586 . . . . . . . 8 (𝜑𝑌 ∈ V)
113 restabs 23080 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
11450, 14, 112, 113mp3an2i 1468 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
115110, 114eqtrid 2778 . . . . . 6 (𝜑 → (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
116115oveq1d 7361 . . . . 5 (𝜑 → ((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀))
117116fveq1d 6824 . . . 4 (𝜑 → (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)) = (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
118108, 117eleqtrrd 2834 . . 3 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
11912, 38sstrdi 3942 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
120 resttopon 23076 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
12199, 119, 120sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
122109, 121eqeltrid 2835 . . . . 5 (𝜑𝑁 ∈ (TopOn‘𝑌))
123 topontop 22828 . . . . 5 (𝑁 ∈ (TopOn‘𝑌) → 𝑁 ∈ Top)
124122, 123syl 17 . . . 4 (𝜑𝑁 ∈ Top)
125 toponuni 22829 . . . . . 6 (𝑁 ∈ (TopOn‘𝑌) → 𝑌 = 𝑁)
126122, 125syl 17 . . . . 5 (𝜑𝑌 = 𝑁)
12714, 126sseqtrd 3966 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁)
12814, 12sstrd 3940 . . . . . . . . 9 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℝ)
129 difssd 4084 . . . . . . . . 9 (𝜑 → (ℝ ∖ 𝑌) ⊆ ℝ)
130128, 129unssd 4139 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ)
131 ssun1 4125 . . . . . . . . 9 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))
132131a1i 11 . . . . . . . 8 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)))
13317ntrss 22970 . . . . . . . 8 ((𝑇 ∈ Top ∧ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
1343, 130, 132, 133mp3an2i 1468 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
135134, 28sseldd 3930 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
136 f1of 6763 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
1374, 136syl 17 . . . . . . 7 (𝜑𝐹:𝑋𝑌)
138137, 22ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ 𝑌)
139135, 138elind 4147 . . . . 5 (𝜑 → (𝐹𝐶) ∈ (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
140 eqid 2731 . . . . . . . 8 (𝑇t 𝑌) = (𝑇t 𝑌)
14117, 140restntr 23097 . . . . . . 7 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
1423, 12, 14, 141mp3an2i 1468 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
143 restabs 23080 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14450, 12, 53, 143mp3an2i 1468 . . . . . . . . 9 (𝜑 → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14548oveq1i 7356 . . . . . . . . 9 (𝑇t 𝑌) = ((𝐽t ℝ) ↾t 𝑌)
146144, 145, 1093eqtr4g 2791 . . . . . . . 8 (𝜑 → (𝑇t 𝑌) = 𝑁)
147146fveq2d 6826 . . . . . . 7 (𝜑 → (int‘(𝑇t 𝑌)) = (int‘𝑁))
148147fveq1d 6824 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
149142, 148eqtr3d 2768 . . . . 5 (𝜑 → (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
150139, 149eleqtrd 2833 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
151126feq2d 6635 . . . . . 6 (𝜑 → (𝐹:𝑌𝑋𝐹: 𝑁𝑋))
15232, 151mpbid 232 . . . . 5 (𝜑𝐹: 𝑁𝑋)
153 resttopon 23076 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
15499, 39, 153sylancr 587 . . . . . . 7 (𝜑 → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
15580, 154eqeltrid 2835 . . . . . 6 (𝜑𝑀 ∈ (TopOn‘𝑋))
156 toponuni 22829 . . . . . 6 (𝑀 ∈ (TopOn‘𝑋) → 𝑋 = 𝑀)
157 feq3 6631 . . . . . 6 (𝑋 = 𝑀 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
158155, 156, 1573syl 18 . . . . 5 (𝜑 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
159152, 158mpbid 232 . . . 4 (𝜑𝐹: 𝑁 𝑀)
160 eqid 2731 . . . . 5 𝑁 = 𝑁
161 eqid 2731 . . . . 5 𝑀 = 𝑀
162160, 161cnprest 23204 . . . 4 (((𝑁 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁) ∧ ((𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ 𝐹: 𝑁 𝑀)) → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
163124, 127, 150, 159, 162syl22anc 838 . . 3 (𝜑 → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
164118, 163mpbird 257 . 2 (𝜑𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)))
16529, 164jca 511 1 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897   cuni 4856   class class class wbr 5089  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  Fun wfun 6475  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   + caddc 11009  cle 11147  cmin 11344  +crp 12890  (,)cioo 13245  [,]cicc 13248  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21291  Topctop 22808  TopOnctopon 22825  intcnt 22932   Cn ccn 23139   CnP ccnp 23140  Compccmp 23301  cnccncf 24796   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795
This theorem is referenced by:  dvcnvre  25951
  Copyright terms: Public domain W3C validator