MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem2 Structured version   Visualization version   GIF version

Theorem dvcnvrelem2 25382
Description: Lemma for dvcnvre 25383. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
dvcnvre.t 𝑇 = (topGen‘ran (,))
dvcnvre.j 𝐽 = (TopOpen‘ℂfld)
dvcnvre.m 𝑀 = (𝐽t 𝑋)
dvcnvre.n 𝑁 = (𝐽t 𝑌)
Assertion
Ref Expression
dvcnvrelem2 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))

Proof of Theorem dvcnvrelem2
StepHypRef Expression
1 dvcnvre.t . . . . 5 𝑇 = (topGen‘ran (,))
2 retop 24125 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2834 . . . 4 𝑇 ∈ Top
4 dvcnvre.1 . . . . . 6 (𝜑𝐹:𝑋1-1-onto𝑌)
5 f1ofo 6791 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
6 forn 6759 . . . . . 6 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
74, 5, 63syl 18 . . . . 5 (𝜑 → ran 𝐹 = 𝑌)
8 dvcnvre.f . . . . . 6 (𝜑𝐹 ∈ (𝑋cn→ℝ))
9 cncff 24256 . . . . . 6 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
10 frn 6675 . . . . . 6 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
118, 9, 103syl 18 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ)
127, 11eqsstrrd 3983 . . . 4 (𝜑𝑌 ⊆ ℝ)
13 imassrn 6024 . . . . 5 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ran 𝐹
1413, 7sseqtrid 3996 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌)
15 uniretop 24126 . . . . . 6 ℝ = (topGen‘ran (,))
161unieqi 4878 . . . . . 6 𝑇 = (topGen‘ran (,))
1715, 16eqtr4i 2767 . . . . 5 ℝ = 𝑇
1817ntrss 22406 . . . 4 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
193, 12, 14, 18mp3an2i 1466 . . 3 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
20 dvcnvre.d . . . . 5 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
21 dvcnvre.z . . . . 5 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
22 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
23 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
24 dvcnvre.s . . . . 5 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
258, 20, 21, 4, 22, 23, 24dvcnvrelem1 25381 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
261fveq2i 6845 . . . . 5 (int‘𝑇) = (int‘(topGen‘ran (,)))
2726fveq1i 6843 . . . 4 ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
2825, 27eleqtrrdi 2849 . . 3 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
2919, 28sseldd 3945 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘𝑌))
30 f1ocnv 6796 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
31 f1of 6784 . . . . . . 7 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
324, 30, 313syl 18 . . . . . 6 (𝜑𝐹:𝑌𝑋)
33 ffun 6671 . . . . . 6 (𝐹:𝑌𝑋 → Fun 𝐹)
34 funcnvres 6579 . . . . . 6 (Fun 𝐹(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
3532, 33, 343syl 18 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
36 dvbsss 25266 . . . . . . . . . . 11 dom (ℝ D 𝐹) ⊆ ℝ
3720, 36eqsstrrdi 3999 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
38 ax-resscn 11108 . . . . . . . . . 10 ℝ ⊆ ℂ
3937, 38sstrdi 3956 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
40 cncfss 24262 . . . . . . . . 9 ((((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
4124, 39, 40syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
42 f1of1 6783 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
434, 42syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
44 f1ores 6798 . . . . . . . . . 10 ((𝐹:𝑋1-1𝑌 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
4543, 24, 44syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
46 dvcnvre.j . . . . . . . . . . . . . . 15 𝐽 = (TopOpen‘ℂfld)
4746tgioo2 24166 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (𝐽t ℝ)
481, 47eqtri 2764 . . . . . . . . . . . . 13 𝑇 = (𝐽t ℝ)
4948oveq1i 7367 . . . . . . . . . . . 12 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅)))
5046cnfldtop 24147 . . . . . . . . . . . . 13 𝐽 ∈ Top
5124, 37sstrd 3954 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
52 reex 11142 . . . . . . . . . . . . . 14 ℝ ∈ V
5352a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
54 restabs 22516 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5550, 51, 53, 54mp3an2i 1466 . . . . . . . . . . . 12 (𝜑 → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5649, 55eqtrid 2788 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5737, 22sseldd 3945 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
5823rpred 12957 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
5957, 58resubcld 11583 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ)
6057, 58readdcld 11184 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
61 eqid 2736 . . . . . . . . . . . . 13 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅)))
621, 61icccmp 24188 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6359, 60, 62syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6456, 63eqeltrrd 2839 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
65 f1of 6784 . . . . . . . . . . . 12 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6645, 65syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6711, 38sstrdi 3956 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ ℂ)
6813, 67sstrid 3955 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ)
69 rescncf 24260 . . . . . . . . . . . . 13 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
7024, 8, 69sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
71 cncfcdm 24261 . . . . . . . . . . . 12 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7268, 70, 71syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7366, 72mpbird 256 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
74 eqid 2736 . . . . . . . . . . 11 (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅)))
7546, 74cncfcnvcn 24288 . . . . . . . . . 10 (((𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7664, 73, 75syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7745, 76mpbid 231 . . . . . . . 8 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))))
7841, 77sseldd 3945 . . . . . . 7 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
79 eqid 2736 . . . . . . . . 9 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
80 dvcnvre.m . . . . . . . . 9 𝑀 = (𝐽t 𝑋)
8146, 79, 80cncfcn 24273 . . . . . . . 8 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8268, 39, 81syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8378, 82eleqtrd 2840 . . . . . 6 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8457, 23ltsubrpd 12989 . . . . . . . . . 10 (𝜑 → (𝐶𝑅) < 𝐶)
8559, 57, 84ltled 11303 . . . . . . . . 9 (𝜑 → (𝐶𝑅) ≤ 𝐶)
8657, 23ltaddrpd 12990 . . . . . . . . . 10 (𝜑𝐶 < (𝐶 + 𝑅))
8757, 60, 86ltled 11303 . . . . . . . . 9 (𝜑𝐶 ≤ (𝐶 + 𝑅))
88 elicc2 13329 . . . . . . . . . 10 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
8959, 60, 88syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
9057, 85, 87, 89mpbir3and 1342 . . . . . . . 8 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
91 ffun 6671 . . . . . . . . . 10 (𝐹:𝑋⟶ℝ → Fun 𝐹)
928, 9, 913syl 18 . . . . . . . . 9 (𝜑 → Fun 𝐹)
93 fdm 6677 . . . . . . . . . . 11 (𝐹:𝑋⟶ℝ → dom 𝐹 = 𝑋)
948, 9, 933syl 18 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑋)
9524, 94sseqtrrd 3985 . . . . . . . . 9 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
96 funfvima2 7181 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9792, 95, 96syl2anc 584 . . . . . . . 8 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9890, 97mpd 15 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
9946cnfldtopon 24146 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
100 resttopon 22512 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ) → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
10199, 68, 100sylancr 587 . . . . . . . 8 (𝜑 → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
102 toponuni 22263 . . . . . . . 8 ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
103101, 102syl 17 . . . . . . 7 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
10498, 103eleqtrd 2840 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
105 eqid 2736 . . . . . . 7 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
106105cncnpi 22629 . . . . . 6 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀) ∧ (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
10783, 104, 106syl2anc 584 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
10835, 107eqeltrrd 2839 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
109 dvcnvre.n . . . . . . . 8 𝑁 = (𝐽t 𝑌)
110109oveq1i 7367 . . . . . . 7 (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
111 ssexg 5280 . . . . . . . . 9 ((𝑌 ⊆ ℝ ∧ ℝ ∈ V) → 𝑌 ∈ V)
11212, 52, 111sylancl 586 . . . . . . . 8 (𝜑𝑌 ∈ V)
113 restabs 22516 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
11450, 14, 112, 113mp3an2i 1466 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
115110, 114eqtrid 2788 . . . . . 6 (𝜑 → (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
116115oveq1d 7372 . . . . 5 (𝜑 → ((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀))
117116fveq1d 6844 . . . 4 (𝜑 → (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)) = (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
118108, 117eleqtrrd 2841 . . 3 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
11912, 38sstrdi 3956 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
120 resttopon 22512 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
12199, 119, 120sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
122109, 121eqeltrid 2842 . . . . 5 (𝜑𝑁 ∈ (TopOn‘𝑌))
123 topontop 22262 . . . . 5 (𝑁 ∈ (TopOn‘𝑌) → 𝑁 ∈ Top)
124122, 123syl 17 . . . 4 (𝜑𝑁 ∈ Top)
125 toponuni 22263 . . . . . 6 (𝑁 ∈ (TopOn‘𝑌) → 𝑌 = 𝑁)
126122, 125syl 17 . . . . 5 (𝜑𝑌 = 𝑁)
12714, 126sseqtrd 3984 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁)
12814, 12sstrd 3954 . . . . . . . . 9 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℝ)
129 difssd 4092 . . . . . . . . 9 (𝜑 → (ℝ ∖ 𝑌) ⊆ ℝ)
130128, 129unssd 4146 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ)
131 ssun1 4132 . . . . . . . . 9 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))
132131a1i 11 . . . . . . . 8 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)))
13317ntrss 22406 . . . . . . . 8 ((𝑇 ∈ Top ∧ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
1343, 130, 132, 133mp3an2i 1466 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
135134, 28sseldd 3945 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
136 f1of 6784 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
1374, 136syl 17 . . . . . . 7 (𝜑𝐹:𝑋𝑌)
138137, 22ffvelcdmd 7036 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ 𝑌)
139135, 138elind 4154 . . . . 5 (𝜑 → (𝐹𝐶) ∈ (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
140 eqid 2736 . . . . . . . 8 (𝑇t 𝑌) = (𝑇t 𝑌)
14117, 140restntr 22533 . . . . . . 7 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
1423, 12, 14, 141mp3an2i 1466 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
143 restabs 22516 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14450, 12, 53, 143mp3an2i 1466 . . . . . . . . 9 (𝜑 → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14548oveq1i 7367 . . . . . . . . 9 (𝑇t 𝑌) = ((𝐽t ℝ) ↾t 𝑌)
146144, 145, 1093eqtr4g 2801 . . . . . . . 8 (𝜑 → (𝑇t 𝑌) = 𝑁)
147146fveq2d 6846 . . . . . . 7 (𝜑 → (int‘(𝑇t 𝑌)) = (int‘𝑁))
148147fveq1d 6844 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
149142, 148eqtr3d 2778 . . . . 5 (𝜑 → (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
150139, 149eleqtrd 2840 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
151126feq2d 6654 . . . . . 6 (𝜑 → (𝐹:𝑌𝑋𝐹: 𝑁𝑋))
15232, 151mpbid 231 . . . . 5 (𝜑𝐹: 𝑁𝑋)
153 resttopon 22512 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
15499, 39, 153sylancr 587 . . . . . . 7 (𝜑 → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
15580, 154eqeltrid 2842 . . . . . 6 (𝜑𝑀 ∈ (TopOn‘𝑋))
156 toponuni 22263 . . . . . 6 (𝑀 ∈ (TopOn‘𝑋) → 𝑋 = 𝑀)
157 feq3 6651 . . . . . 6 (𝑋 = 𝑀 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
158155, 156, 1573syl 18 . . . . 5 (𝜑 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
159152, 158mpbid 231 . . . 4 (𝜑𝐹: 𝑁 𝑀)
160 eqid 2736 . . . . 5 𝑁 = 𝑁
161 eqid 2736 . . . . 5 𝑀 = 𝑀
162160, 161cnprest 22640 . . . 4 (((𝑁 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁) ∧ ((𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ 𝐹: 𝑁 𝑀)) → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
163124, 127, 150, 159, 162syl22anc 837 . . 3 (𝜑 → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
164118, 163mpbird 256 . 2 (𝜑𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)))
16529, 164jca 512 1 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910   cuni 4865   class class class wbr 5105  ccnv 5632  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Fun wfun 6490  wf 6492  1-1wf1 6493  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054  cle 11190  cmin 11385  +crp 12915  (,)cioo 13264  [,]cicc 13267  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  Topctop 22242  TopOnctopon 22259  intcnt 22368   Cn ccn 22575   CnP ccnp 22576  Compccmp 22737  cnccncf 24239   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  dvcnvre  25383
  Copyright terms: Public domain W3C validator