Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for funcsetcestrc 17481. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
Ref | Expression |
---|---|
funcsetcestrclem1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
2 | 1 | adantr 485 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
3 | opeq2 4764 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈(Base‘ndx), 𝑥〉 = 〈(Base‘ndx), 𝑋〉) | |
4 | 3 | sneqd 4535 | . . 3 ⊢ (𝑥 = 𝑋 → {〈(Base‘ndx), 𝑥〉} = {〈(Base‘ndx), 𝑋〉}) |
5 | 4 | adantl 486 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑥 = 𝑋) → {〈(Base‘ndx), 𝑥〉} = {〈(Base‘ndx), 𝑋〉}) |
6 | simpr 489 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
7 | snex 5301 | . . 3 ⊢ {〈(Base‘ndx), 𝑋〉} ∈ V | |
8 | 7 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ V) |
9 | 2, 5, 6, 8 | fvmptd 6767 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 {csn 4523 〈cop 4529 ↦ cmpt 5113 ‘cfv 6336 ndxcnx 16539 Basecbs 16542 SetCatcsetc 17402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6295 df-fun 6338 df-fv 6344 |
This theorem is referenced by: funcsetcestrclem2 17472 embedsetcestrclem 17474 funcsetcestrclem7 17478 funcsetcestrclem8 17479 funcsetcestrclem9 17480 fullsetcestrc 17483 |
Copyright terms: Public domain | W3C validator |