| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| Ref | Expression |
|---|---|
| funcsetcestrclem1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| 3 | opeq2 4841 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈(Base‘ndx), 𝑥〉 = 〈(Base‘ndx), 𝑋〉) | |
| 4 | 3 | sneqd 4604 | . . 3 ⊢ (𝑥 = 𝑋 → {〈(Base‘ndx), 𝑥〉} = {〈(Base‘ndx), 𝑋〉}) |
| 5 | 4 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑥 = 𝑋) → {〈(Base‘ndx), 𝑥〉} = {〈(Base‘ndx), 𝑋〉}) |
| 6 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
| 7 | snex 5394 | . . 3 ⊢ {〈(Base‘ndx), 𝑋〉} ∈ V | |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ V) |
| 9 | 2, 5, 6, 8 | fvmptd 6978 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 ↦ cmpt 5191 ‘cfv 6514 ndxcnx 17170 Basecbs 17186 SetCatcsetc 18044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: funcsetcestrclem2 18123 embedsetcestrclem 18125 funcsetcestrclem7 18129 funcsetcestrclem8 18130 funcsetcestrclem9 18131 fullsetcestrc 18134 |
| Copyright terms: Public domain | W3C validator |