MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem1 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem1 18200
Description: Lemma 1 for funcsetcestrc 18210. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
Assertion
Ref Expression
funcsetcestrclem1 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑥)   𝐹(𝑥)

Proof of Theorem funcsetcestrclem1
StepHypRef Expression
1 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
21adantr 480 . 2 ((𝜑𝑋𝐶) → 𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
3 opeq2 4873 . . . 4 (𝑥 = 𝑋 → ⟨(Base‘ndx), 𝑥⟩ = ⟨(Base‘ndx), 𝑋⟩)
43sneqd 4637 . . 3 (𝑥 = 𝑋 → {⟨(Base‘ndx), 𝑥⟩} = {⟨(Base‘ndx), 𝑋⟩})
54adantl 481 . 2 (((𝜑𝑋𝐶) ∧ 𝑥 = 𝑋) → {⟨(Base‘ndx), 𝑥⟩} = {⟨(Base‘ndx), 𝑋⟩})
6 simpr 484 . 2 ((𝜑𝑋𝐶) → 𝑋𝐶)
7 snex 5435 . . 3 {⟨(Base‘ndx), 𝑋⟩} ∈ V
87a1i 11 . 2 ((𝜑𝑋𝐶) → {⟨(Base‘ndx), 𝑋⟩} ∈ V)
92, 5, 6, 8fvmptd 7022 1 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  {csn 4625  cop 4631  cmpt 5224  cfv 6560  ndxcnx 17231  Basecbs 17248  SetCatcsetc 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568
This theorem is referenced by:  funcsetcestrclem2  18201  embedsetcestrclem  18203  funcsetcestrclem7  18207  funcsetcestrclem8  18208  funcsetcestrclem9  18209  fullsetcestrc  18212
  Copyright terms: Public domain W3C validator