![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for funcsetcestrc 18220. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
Ref | Expression |
---|---|
funcsetcestrclem1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
3 | opeq2 4879 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈(Base‘ndx), 𝑥〉 = 〈(Base‘ndx), 𝑋〉) | |
4 | 3 | sneqd 4643 | . . 3 ⊢ (𝑥 = 𝑋 → {〈(Base‘ndx), 𝑥〉} = {〈(Base‘ndx), 𝑋〉}) |
5 | 4 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑥 = 𝑋) → {〈(Base‘ndx), 𝑥〉} = {〈(Base‘ndx), 𝑋〉}) |
6 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
7 | snex 5442 | . . 3 ⊢ {〈(Base‘ndx), 𝑋〉} ∈ V | |
8 | 7 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ V) |
9 | 2, 5, 6, 8 | fvmptd 7023 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 〈cop 4637 ↦ cmpt 5231 ‘cfv 6563 ndxcnx 17227 Basecbs 17245 SetCatcsetc 18129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: funcsetcestrclem2 18211 embedsetcestrclem 18213 funcsetcestrclem7 18217 funcsetcestrclem8 18218 funcsetcestrclem9 18219 fullsetcestrc 18222 |
Copyright terms: Public domain | W3C validator |