| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for funcsetcestrc 18072. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| Ref | Expression |
|---|---|
| funcsetcestrclem1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| 3 | opeq2 4825 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈(Base‘ndx), 𝑥〉 = 〈(Base‘ndx), 𝑋〉) | |
| 4 | 3 | sneqd 4587 | . . 3 ⊢ (𝑥 = 𝑋 → {〈(Base‘ndx), 𝑥〉} = {〈(Base‘ndx), 𝑋〉}) |
| 5 | 4 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑥 = 𝑋) → {〈(Base‘ndx), 𝑥〉} = {〈(Base‘ndx), 𝑋〉}) |
| 6 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
| 7 | snex 5376 | . . 3 ⊢ {〈(Base‘ndx), 𝑋〉} ∈ V | |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ V) |
| 9 | 2, 5, 6, 8 | fvmptd 6942 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 〈cop 4581 ↦ cmpt 5174 ‘cfv 6486 ndxcnx 17106 Basecbs 17122 SetCatcsetc 17984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: funcsetcestrclem2 18063 embedsetcestrclem 18065 funcsetcestrclem7 18069 funcsetcestrclem8 18070 funcsetcestrclem9 18071 fullsetcestrc 18074 |
| Copyright terms: Public domain | W3C validator |