MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsetcestrc Structured version   Visualization version   GIF version

Theorem fullsetcestrc 18211
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
fullsetcestrc (𝜑𝐹(𝑆 Full 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fullsetcestrc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
7 funcsetcestrc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
81, 2, 3, 4, 5, 6, 7funcsetcestrc 18209 . 2 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
91, 2, 3, 4, 5, 6, 7funcsetcestrclem8 18207 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
104adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑈 ∈ WUni)
11 eqid 2737 . . . . . . 7 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 2, 3, 4, 5funcsetcestrclem2 18200 . . . . . . . 8 ((𝜑𝑎𝐶) → (𝐹𝑎) ∈ 𝑈)
1312adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑎) ∈ 𝑈)
141, 2, 3, 4, 5funcsetcestrclem2 18200 . . . . . . . 8 ((𝜑𝑏𝐶) → (𝐹𝑏) ∈ 𝑈)
1514adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑏) ∈ 𝑈)
16 eqid 2737 . . . . . . 7 (Base‘(𝐹𝑎)) = (Base‘(𝐹𝑎))
17 eqid 2737 . . . . . . 7 (Base‘(𝐹𝑏)) = (Base‘(𝐹𝑏))
187, 10, 11, 13, 15, 16, 17elestrchom 18172 . . . . . 6 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ :(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏))))
191, 2, 3funcsetcestrclem1 18199 . . . . . . . . . . 11 ((𝜑𝑎𝐶) → (𝐹𝑎) = {⟨(Base‘ndx), 𝑎⟩})
2019adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑎) = {⟨(Base‘ndx), 𝑎⟩})
2120fveq2d 6910 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑎)) = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
22 eqid 2737 . . . . . . . . . . 11 {⟨(Base‘ndx), 𝑎⟩} = {⟨(Base‘ndx), 𝑎⟩}
23221strbas 17263 . . . . . . . . . 10 (𝑎𝐶𝑎 = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
2423ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎 = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
2521, 24eqtr4d 2780 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑎)) = 𝑎)
261, 2, 3funcsetcestrclem1 18199 . . . . . . . . . . 11 ((𝜑𝑏𝐶) → (𝐹𝑏) = {⟨(Base‘ndx), 𝑏⟩})
2726adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑏) = {⟨(Base‘ndx), 𝑏⟩})
2827fveq2d 6910 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑏)) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
29 eqid 2737 . . . . . . . . . . 11 {⟨(Base‘ndx), 𝑏⟩} = {⟨(Base‘ndx), 𝑏⟩}
30291strbas 17263 . . . . . . . . . 10 (𝑏𝐶𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3130ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3228, 31eqtr4d 2780 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑏)) = 𝑏)
3325, 32feq23d 6731 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏)) ↔ :𝑎𝑏))
34 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐶𝑏𝐶))
3534ancomd 461 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑏𝐶𝑎𝐶))
36 elmapg 8879 . . . . . . . . . . . . 13 ((𝑏𝐶𝑎𝐶) → ( ∈ (𝑏m 𝑎) ↔ :𝑎𝑏))
3735, 36syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑏m 𝑎) ↔ :𝑎𝑏))
3837biimpar 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∈ (𝑏m 𝑎))
39 equequ2 2025 . . . . . . . . . . . 12 (𝑘 = → ( = 𝑘 = ))
4039adantl 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) ∧ 𝑘 = ) → ( = 𝑘 = ))
41 eqidd 2738 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → = )
4238, 40, 41rspcedvd 3624 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘)
431, 2, 3, 4, 5, 6funcsetcestrclem6 18205 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐶𝑏𝐶) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
44433expa 1119 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
4544eqeq2d 2748 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ( = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4645rexbidva 3177 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘))
4746adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → (∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘))
4842, 47mpbird 257 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘))
49 eqid 2737 . . . . . . . . . . . 12 (Hom ‘𝑆) = (Hom ‘𝑆)
501, 4setcbas 18123 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 = (Base‘𝑆))
512, 50eqtr4id 2796 . . . . . . . . . . . . . . . 16 (𝜑𝐶 = 𝑈)
5251eleq2d 2827 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎𝐶𝑎𝑈))
5352biimpcd 249 . . . . . . . . . . . . . 14 (𝑎𝐶 → (𝜑𝑎𝑈))
5453adantr 480 . . . . . . . . . . . . 13 ((𝑎𝐶𝑏𝐶) → (𝜑𝑎𝑈))
5554impcom 407 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑈)
5651eleq2d 2827 . . . . . . . . . . . . . . 15 (𝜑 → (𝑏𝐶𝑏𝑈))
5756biimpcd 249 . . . . . . . . . . . . . 14 (𝑏𝐶 → (𝜑𝑏𝑈))
5857adantl 481 . . . . . . . . . . . . 13 ((𝑎𝐶𝑏𝐶) → (𝜑𝑏𝑈))
5958impcom 407 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑈)
601, 10, 49, 55, 59setchom 18125 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎(Hom ‘𝑆)𝑏) = (𝑏m 𝑎))
6160rexeqdv 3327 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘)))
6261adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → (∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘)))
6348, 62mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
6463ex 412 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:𝑎𝑏 → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6533, 64sylbid 240 . . . . . 6 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6618, 65sylbid 240 . . . . 5 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6766ralrimiv 3145 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ∀ ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
68 dffo3 7122 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ∧ ∀ ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
699, 67, 68sylanbrc 583 . . 3 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
7069ralrimivva 3202 . 2 (𝜑 → ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
712, 11, 49isfull2 17958 . 2 (𝐹(𝑆 Full 𝐸)𝐺 ↔ (𝐹(𝑆 Func 𝐸)𝐺 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))))
728, 70, 71sylanbrc 583 1 (𝜑𝐹(𝑆 Full 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225   I cid 5577  cres 5687  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  cmpo 7433  ωcom 7887  m cmap 8866  WUnicwun 10740  ndxcnx 17230  Basecbs 17247  Hom chom 17308   Func cfunc 17899   Full cful 17949  SetCatcsetc 18120  ExtStrCatcestrc 18166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-wun 10742  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-plp 11023  df-ltp 11025  df-enr 11095  df-nr 11096  df-c 11161  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-hom 17321  df-cco 17322  df-cat 17711  df-cid 17712  df-func 17903  df-full 17951  df-setc 18121  df-estrc 18167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator