MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsetcestrc Structured version   Visualization version   GIF version

Theorem fullsetcestrc 18074
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
fullsetcestrc (𝜑𝐹(𝑆 Full 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fullsetcestrc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
7 funcsetcestrc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
81, 2, 3, 4, 5, 6, 7funcsetcestrc 18072 . 2 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
91, 2, 3, 4, 5, 6, 7funcsetcestrclem8 18070 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
104adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑈 ∈ WUni)
11 eqid 2733 . . . . . . 7 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 2, 3, 4, 5funcsetcestrclem2 18063 . . . . . . . 8 ((𝜑𝑎𝐶) → (𝐹𝑎) ∈ 𝑈)
1312adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑎) ∈ 𝑈)
141, 2, 3, 4, 5funcsetcestrclem2 18063 . . . . . . . 8 ((𝜑𝑏𝐶) → (𝐹𝑏) ∈ 𝑈)
1514adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑏) ∈ 𝑈)
16 eqid 2733 . . . . . . 7 (Base‘(𝐹𝑎)) = (Base‘(𝐹𝑎))
17 eqid 2733 . . . . . . 7 (Base‘(𝐹𝑏)) = (Base‘(𝐹𝑏))
187, 10, 11, 13, 15, 16, 17elestrchom 18036 . . . . . 6 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ :(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏))))
191, 2, 3funcsetcestrclem1 18062 . . . . . . . . . . 11 ((𝜑𝑎𝐶) → (𝐹𝑎) = {⟨(Base‘ndx), 𝑎⟩})
2019adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑎) = {⟨(Base‘ndx), 𝑎⟩})
2120fveq2d 6832 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑎)) = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
22 eqid 2733 . . . . . . . . . . 11 {⟨(Base‘ndx), 𝑎⟩} = {⟨(Base‘ndx), 𝑎⟩}
23221strbas 17137 . . . . . . . . . 10 (𝑎𝐶𝑎 = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
2423ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎 = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
2521, 24eqtr4d 2771 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑎)) = 𝑎)
261, 2, 3funcsetcestrclem1 18062 . . . . . . . . . . 11 ((𝜑𝑏𝐶) → (𝐹𝑏) = {⟨(Base‘ndx), 𝑏⟩})
2726adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑏) = {⟨(Base‘ndx), 𝑏⟩})
2827fveq2d 6832 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑏)) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
29 eqid 2733 . . . . . . . . . . 11 {⟨(Base‘ndx), 𝑏⟩} = {⟨(Base‘ndx), 𝑏⟩}
30291strbas 17137 . . . . . . . . . 10 (𝑏𝐶𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3130ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3228, 31eqtr4d 2771 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑏)) = 𝑏)
3325, 32feq23d 6651 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏)) ↔ :𝑎𝑏))
34 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐶𝑏𝐶))
3534ancomd 461 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑏𝐶𝑎𝐶))
36 elmapg 8769 . . . . . . . . . . . . 13 ((𝑏𝐶𝑎𝐶) → ( ∈ (𝑏m 𝑎) ↔ :𝑎𝑏))
3735, 36syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑏m 𝑎) ↔ :𝑎𝑏))
3837biimpar 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∈ (𝑏m 𝑎))
39 equequ2 2027 . . . . . . . . . . . 12 (𝑘 = → ( = 𝑘 = ))
4039adantl 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) ∧ 𝑘 = ) → ( = 𝑘 = ))
41 eqidd 2734 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → = )
4238, 40, 41rspcedvd 3575 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘)
431, 2, 3, 4, 5, 6funcsetcestrclem6 18068 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐶𝑏𝐶) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
44433expa 1118 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
4544eqeq2d 2744 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ( = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4645rexbidva 3155 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘))
4746adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → (∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘))
4842, 47mpbird 257 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘))
49 eqid 2733 . . . . . . . . . . . 12 (Hom ‘𝑆) = (Hom ‘𝑆)
501, 4setcbas 17987 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 = (Base‘𝑆))
512, 50eqtr4id 2787 . . . . . . . . . . . . . . . 16 (𝜑𝐶 = 𝑈)
5251eleq2d 2819 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎𝐶𝑎𝑈))
5352biimpcd 249 . . . . . . . . . . . . . 14 (𝑎𝐶 → (𝜑𝑎𝑈))
5453adantr 480 . . . . . . . . . . . . 13 ((𝑎𝐶𝑏𝐶) → (𝜑𝑎𝑈))
5554impcom 407 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑈)
5651eleq2d 2819 . . . . . . . . . . . . . . 15 (𝜑 → (𝑏𝐶𝑏𝑈))
5756biimpcd 249 . . . . . . . . . . . . . 14 (𝑏𝐶 → (𝜑𝑏𝑈))
5857adantl 481 . . . . . . . . . . . . 13 ((𝑎𝐶𝑏𝐶) → (𝜑𝑏𝑈))
5958impcom 407 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑈)
601, 10, 49, 55, 59setchom 17989 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎(Hom ‘𝑆)𝑏) = (𝑏m 𝑎))
6160rexeqdv 3294 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘)))
6261adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → (∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘)))
6348, 62mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
6463ex 412 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:𝑎𝑏 → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6533, 64sylbid 240 . . . . . 6 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6618, 65sylbid 240 . . . . 5 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6766ralrimiv 3124 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ∀ ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
68 dffo3 7041 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ∧ ∀ ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
699, 67, 68sylanbrc 583 . . 3 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
7069ralrimivva 3176 . 2 (𝜑 → ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
712, 11, 49isfull2 17822 . 2 (𝐹(𝑆 Full 𝐸)𝐺 ↔ (𝐹(𝑆 Func 𝐸)𝐺 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))))
728, 70, 71sylanbrc 583 1 (𝜑𝐹(𝑆 Full 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {csn 4575  cop 4581   class class class wbr 5093  cmpt 5174   I cid 5513  cres 5621  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7352  cmpo 7354  ωcom 7802  m cmap 8756  WUnicwun 10598  ndxcnx 17106  Basecbs 17122  Hom chom 17174   Func cfunc 17763   Full cful 17813  SetCatcsetc 17984  ExtStrCatcestrc 18030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-wun 10600  df-ni 10770  df-pli 10771  df-mi 10772  df-lti 10773  df-plpq 10806  df-mpq 10807  df-ltpq 10808  df-enq 10809  df-nq 10810  df-erq 10811  df-plq 10812  df-mq 10813  df-1nq 10814  df-rq 10815  df-ltnq 10816  df-np 10879  df-plp 10881  df-ltp 10883  df-enr 10953  df-nr 10954  df-c 11019  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-func 17767  df-full 17815  df-setc 17985  df-estrc 18031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator