MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsetcestrc Structured version   Visualization version   GIF version

Theorem fullsetcestrc 17408
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
fullsetcestrc (𝜑𝐹(𝑆 Full 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fullsetcestrc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
7 funcsetcestrc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
81, 2, 3, 4, 5, 6, 7funcsetcestrc 17406 . 2 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
91, 2, 3, 4, 5, 6, 7funcsetcestrclem8 17404 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
104adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑈 ∈ WUni)
11 eqid 2798 . . . . . . 7 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 2, 3, 4, 5funcsetcestrclem2 17397 . . . . . . . 8 ((𝜑𝑎𝐶) → (𝐹𝑎) ∈ 𝑈)
1312adantrr 716 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑎) ∈ 𝑈)
141, 2, 3, 4, 5funcsetcestrclem2 17397 . . . . . . . 8 ((𝜑𝑏𝐶) → (𝐹𝑏) ∈ 𝑈)
1514adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑏) ∈ 𝑈)
16 eqid 2798 . . . . . . 7 (Base‘(𝐹𝑎)) = (Base‘(𝐹𝑎))
17 eqid 2798 . . . . . . 7 (Base‘(𝐹𝑏)) = (Base‘(𝐹𝑏))
187, 10, 11, 13, 15, 16, 17elestrchom 17370 . . . . . 6 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ :(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏))))
191, 2, 3funcsetcestrclem1 17396 . . . . . . . . . . 11 ((𝜑𝑎𝐶) → (𝐹𝑎) = {⟨(Base‘ndx), 𝑎⟩})
2019adantrr 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑎) = {⟨(Base‘ndx), 𝑎⟩})
2120fveq2d 6649 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑎)) = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
22 eqid 2798 . . . . . . . . . . 11 {⟨(Base‘ndx), 𝑎⟩} = {⟨(Base‘ndx), 𝑎⟩}
23221strbas 16591 . . . . . . . . . 10 (𝑎𝐶𝑎 = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
2423ad2antrl 727 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎 = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
2521, 24eqtr4d 2836 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑎)) = 𝑎)
261, 2, 3funcsetcestrclem1 17396 . . . . . . . . . . 11 ((𝜑𝑏𝐶) → (𝐹𝑏) = {⟨(Base‘ndx), 𝑏⟩})
2726adantrl 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑏) = {⟨(Base‘ndx), 𝑏⟩})
2827fveq2d 6649 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑏)) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
29 eqid 2798 . . . . . . . . . . 11 {⟨(Base‘ndx), 𝑏⟩} = {⟨(Base‘ndx), 𝑏⟩}
30291strbas 16591 . . . . . . . . . 10 (𝑏𝐶𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3130ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3228, 31eqtr4d 2836 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑏)) = 𝑏)
3325, 32feq23d 6482 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏)) ↔ :𝑎𝑏))
34 simpr 488 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐶𝑏𝐶))
3534ancomd 465 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑏𝐶𝑎𝐶))
36 elmapg 8402 . . . . . . . . . . . . 13 ((𝑏𝐶𝑎𝐶) → ( ∈ (𝑏m 𝑎) ↔ :𝑎𝑏))
3735, 36syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑏m 𝑎) ↔ :𝑎𝑏))
3837biimpar 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∈ (𝑏m 𝑎))
39 equequ2 2033 . . . . . . . . . . . 12 (𝑘 = → ( = 𝑘 = ))
4039adantl 485 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) ∧ 𝑘 = ) → ( = 𝑘 = ))
41 eqidd 2799 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → = )
4238, 40, 41rspcedvd 3574 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘)
431, 2, 3, 4, 5, 6funcsetcestrclem6 17402 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐶𝑏𝐶) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
44433expa 1115 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
4544eqeq2d 2809 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ( = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4645rexbidva 3255 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘))
4746adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → (∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘))
4842, 47mpbird 260 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘))
49 eqid 2798 . . . . . . . . . . . 12 (Hom ‘𝑆) = (Hom ‘𝑆)
501, 4setcbas 17330 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 = (Base‘𝑆))
512, 50eqtr4id 2852 . . . . . . . . . . . . . . . 16 (𝜑𝐶 = 𝑈)
5251eleq2d 2875 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎𝐶𝑎𝑈))
5352biimpcd 252 . . . . . . . . . . . . . 14 (𝑎𝐶 → (𝜑𝑎𝑈))
5453adantr 484 . . . . . . . . . . . . 13 ((𝑎𝐶𝑏𝐶) → (𝜑𝑎𝑈))
5554impcom 411 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑈)
5651eleq2d 2875 . . . . . . . . . . . . . . 15 (𝜑 → (𝑏𝐶𝑏𝑈))
5756biimpcd 252 . . . . . . . . . . . . . 14 (𝑏𝐶 → (𝜑𝑏𝑈))
5857adantl 485 . . . . . . . . . . . . 13 ((𝑎𝐶𝑏𝐶) → (𝜑𝑏𝑈))
5958impcom 411 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑈)
601, 10, 49, 55, 59setchom 17332 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎(Hom ‘𝑆)𝑏) = (𝑏m 𝑎))
6160rexeqdv 3365 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘)))
6261adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → (∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘)))
6348, 62mpbird 260 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
6463ex 416 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:𝑎𝑏 → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6533, 64sylbid 243 . . . . . 6 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6618, 65sylbid 243 . . . . 5 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6766ralrimiv 3148 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ∀ ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
68 dffo3 6845 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ∧ ∀ ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
699, 67, 68sylanbrc 586 . . 3 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
7069ralrimivva 3156 . 2 (𝜑 → ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
712, 11, 49isfull2 17173 . 2 (𝐹(𝑆 Full 𝐸)𝐺 ↔ (𝐹(𝑆 Func 𝐸)𝐺 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))))
728, 70, 71sylanbrc 586 1 (𝜑𝐹(𝑆 Full 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {csn 4525  cop 4531   class class class wbr 5030  cmpt 5110   I cid 5424  cres 5521  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  cmpo 7137  ωcom 7560  m cmap 8389  WUnicwun 10111  ndxcnx 16472  Basecbs 16475  Hom chom 16568   Func cfunc 17116   Full cful 17164  SetCatcsetc 17327  ExtStrCatcestrc 17364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-wun 10113  df-ni 10283  df-pli 10284  df-mi 10285  df-lti 10286  df-plpq 10319  df-mpq 10320  df-ltpq 10321  df-enq 10322  df-nq 10323  df-erq 10324  df-plq 10325  df-mq 10326  df-1nq 10327  df-rq 10328  df-ltnq 10329  df-np 10392  df-plp 10394  df-ltp 10396  df-enr 10466  df-nr 10467  df-c 10532  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-func 17120  df-full 17166  df-setc 17328  df-estrc 17365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator