MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsetcestrc Structured version   Visualization version   GIF version

Theorem fullsetcestrc 17406
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
fullsetcestrc (𝜑𝐹(𝑆 Full 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fullsetcestrc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
7 funcsetcestrc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
81, 2, 3, 4, 5, 6, 7funcsetcestrc 17404 . 2 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
91, 2, 3, 4, 5, 6, 7funcsetcestrclem8 17402 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
104adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑈 ∈ WUni)
11 eqid 2826 . . . . . . 7 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 2, 3, 4, 5funcsetcestrclem2 17395 . . . . . . . 8 ((𝜑𝑎𝐶) → (𝐹𝑎) ∈ 𝑈)
1312adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑎) ∈ 𝑈)
141, 2, 3, 4, 5funcsetcestrclem2 17395 . . . . . . . 8 ((𝜑𝑏𝐶) → (𝐹𝑏) ∈ 𝑈)
1514adantrl 712 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑏) ∈ 𝑈)
16 eqid 2826 . . . . . . 7 (Base‘(𝐹𝑎)) = (Base‘(𝐹𝑎))
17 eqid 2826 . . . . . . 7 (Base‘(𝐹𝑏)) = (Base‘(𝐹𝑏))
187, 10, 11, 13, 15, 16, 17elestrchom 17368 . . . . . 6 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ :(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏))))
191, 2, 3funcsetcestrclem1 17394 . . . . . . . . . . 11 ((𝜑𝑎𝐶) → (𝐹𝑎) = {⟨(Base‘ndx), 𝑎⟩})
2019adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑎) = {⟨(Base‘ndx), 𝑎⟩})
2120fveq2d 6671 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑎)) = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
22 eqid 2826 . . . . . . . . . . 11 {⟨(Base‘ndx), 𝑎⟩} = {⟨(Base‘ndx), 𝑎⟩}
23221strbas 16589 . . . . . . . . . 10 (𝑎𝐶𝑎 = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
2423ad2antrl 724 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎 = (Base‘{⟨(Base‘ndx), 𝑎⟩}))
2521, 24eqtr4d 2864 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑎)) = 𝑎)
261, 2, 3funcsetcestrclem1 17394 . . . . . . . . . . 11 ((𝜑𝑏𝐶) → (𝐹𝑏) = {⟨(Base‘ndx), 𝑏⟩})
2726adantrl 712 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝐹𝑏) = {⟨(Base‘ndx), 𝑏⟩})
2827fveq2d 6671 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑏)) = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
29 eqid 2826 . . . . . . . . . . 11 {⟨(Base‘ndx), 𝑏⟩} = {⟨(Base‘ndx), 𝑏⟩}
30291strbas 16589 . . . . . . . . . 10 (𝑏𝐶𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3130ad2antll 725 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏 = (Base‘{⟨(Base‘ndx), 𝑏⟩}))
3228, 31eqtr4d 2864 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (Base‘(𝐹𝑏)) = 𝑏)
3325, 32feq23d 6506 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏)) ↔ :𝑎𝑏))
34 simpr 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐶𝑏𝐶))
3534ancomd 462 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑏𝐶𝑎𝐶))
36 elmapg 8409 . . . . . . . . . . . . 13 ((𝑏𝐶𝑎𝐶) → ( ∈ (𝑏m 𝑎) ↔ :𝑎𝑏))
3735, 36syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ (𝑏m 𝑎) ↔ :𝑎𝑏))
3837biimpar 478 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∈ (𝑏m 𝑎))
39 equequ2 2026 . . . . . . . . . . . 12 (𝑘 = → ( = 𝑘 = ))
4039adantl 482 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) ∧ 𝑘 = ) → ( = 𝑘 = ))
41 eqidd 2827 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → = )
4238, 40, 41rspcedvd 3630 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘)
431, 2, 3, 4, 5, 6funcsetcestrclem6 17400 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐶𝑏𝐶) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
44433expa 1112 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
4544eqeq2d 2837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ 𝑘 ∈ (𝑏m 𝑎)) → ( = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4645rexbidva 3301 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘))
4746adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → (∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = 𝑘))
4842, 47mpbird 258 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘))
49 eqid 2826 . . . . . . . . . . . 12 (Hom ‘𝑆) = (Hom ‘𝑆)
501, 4setcbas 17328 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 = (Base‘𝑆))
5150, 2syl6reqr 2880 . . . . . . . . . . . . . . . 16 (𝜑𝐶 = 𝑈)
5251eleq2d 2903 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎𝐶𝑎𝑈))
5352biimpcd 250 . . . . . . . . . . . . . 14 (𝑎𝐶 → (𝜑𝑎𝑈))
5453adantr 481 . . . . . . . . . . . . 13 ((𝑎𝐶𝑏𝐶) → (𝜑𝑎𝑈))
5554impcom 408 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑈)
5651eleq2d 2903 . . . . . . . . . . . . . . 15 (𝜑 → (𝑏𝐶𝑏𝑈))
5756biimpcd 250 . . . . . . . . . . . . . 14 (𝑏𝐶 → (𝜑𝑏𝑈))
5857adantl 482 . . . . . . . . . . . . 13 ((𝑎𝐶𝑏𝐶) → (𝜑𝑏𝑈))
5958impcom 408 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑈)
601, 10, 49, 55, 59setchom 17330 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎(Hom ‘𝑆)𝑏) = (𝑏m 𝑎))
6160rexeqdv 3422 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘)))
6261adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → (∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ (𝑏m 𝑎) = ((𝑎𝐺𝑏)‘𝑘)))
6348, 62mpbird 258 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐶𝑏𝐶)) ∧ :𝑎𝑏) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
6463ex 413 . . . . . . 7 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:𝑎𝑏 → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6533, 64sylbid 241 . . . . . 6 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (:(Base‘(𝐹𝑎))⟶(Base‘(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6618, 65sylbid 241 . . . . 5 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ( ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
6766ralrimiv 3186 . . . 4 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → ∀ ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
68 dffo3 6864 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)) ∧ ∀ ∈ ((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝑆)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
699, 67, 68sylanbrc 583 . . 3 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
7069ralrimivva 3196 . 2 (𝜑 → ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
712, 11, 49isfull2 17171 . 2 (𝐹(𝑆 Full 𝐸)𝐺 ↔ (𝐹(𝑆 Func 𝐸)𝐺 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)–onto→((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏))))
728, 70, 71sylanbrc 583 1 (𝜑𝐹(𝑆 Full 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  wrex 3144  {csn 4564  cop 4570   class class class wbr 5063  cmpt 5143   I cid 5458  cres 5556  wf 6348  ontowfo 6350  cfv 6352  (class class class)co 7148  cmpo 7150  ωcom 7568  m cmap 8396  WUnicwun 10111  ndxcnx 16470  Basecbs 16473  Hom chom 16566   Func cfunc 17114   Full cful 17162  SetCatcsetc 17325  ExtStrCatcestrc 17362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-omul 8098  df-er 8279  df-ec 8281  df-qs 8285  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-wun 10113  df-ni 10283  df-pli 10284  df-mi 10285  df-lti 10286  df-plpq 10319  df-mpq 10320  df-ltpq 10321  df-enq 10322  df-nq 10323  df-erq 10324  df-plq 10325  df-mq 10326  df-1nq 10327  df-rq 10328  df-ltnq 10329  df-np 10392  df-plp 10394  df-ltp 10396  df-enr 10466  df-nr 10467  df-c 10532  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-hom 16579  df-cco 16580  df-cat 16929  df-cid 16930  df-func 17118  df-full 17164  df-setc 17326  df-estrc 17363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator