MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrc Structured version   Visualization version   GIF version

Theorem funcsetcestrc 17408
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrc (𝜑𝐹(𝑆 Func 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrc
Dummy variables 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.c . 2 𝐶 = (Base‘𝑆)
2 eqid 2821 . 2 (Base‘𝐸) = (Base‘𝐸)
3 eqid 2821 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
4 eqid 2821 . 2 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2821 . 2 (Id‘𝑆) = (Id‘𝑆)
6 eqid 2821 . 2 (Id‘𝐸) = (Id‘𝐸)
7 eqid 2821 . 2 (comp‘𝑆) = (comp‘𝑆)
8 eqid 2821 . 2 (comp‘𝐸) = (comp‘𝐸)
9 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
10 funcsetcestrc.s . . . 4 𝑆 = (SetCat‘𝑈)
1110setccat 17339 . . 3 (𝑈 ∈ WUni → 𝑆 ∈ Cat)
129, 11syl 17 . 2 (𝜑𝑆 ∈ Cat)
13 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
1413estrccat 17377 . . 3 (𝑈 ∈ WUni → 𝐸 ∈ Cat)
159, 14syl 17 . 2 (𝜑𝐸 ∈ Cat)
16 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
17 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
1810, 1, 16, 9, 17, 13, 2funcsetcestrclem3 17400 . 2 (𝜑𝐹:𝐶⟶(Base‘𝐸))
19 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
2010, 1, 16, 9, 17, 19funcsetcestrclem4 17402 . 2 (𝜑𝐺 Fn (𝐶 × 𝐶))
2110, 1, 16, 9, 17, 19, 13funcsetcestrclem8 17406 . 2 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
2210, 1, 16, 9, 17, 19, 13funcsetcestrclem7 17405 . 2 ((𝜑𝑎𝐶) → ((𝑎𝐺𝑎)‘((Id‘𝑆)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)))
2310, 1, 16, 9, 17, 19, 13funcsetcestrclem9 17407 . 2 ((𝜑 ∧ (𝑎𝐶𝑏𝐶𝑐𝐶) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑏(Hom ‘𝑆)𝑐))) → ((𝑎𝐺𝑐)‘(𝑘(⟨𝑎, 𝑏⟩(comp‘𝑆)𝑐))) = (((𝑏𝐺𝑐)‘𝑘)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘)))
241, 2, 3, 4, 5, 6, 7, 8, 12, 15, 18, 20, 21, 22, 23isfuncd 17129 1 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  {csn 4560  cop 4566   class class class wbr 5058  cmpt 5138   I cid 5453  cres 5551  cfv 6349  (class class class)co 7150  cmpo 7152  ωcom 7574  m cmap 8400  WUnicwun 10116  ndxcnx 16474  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929  Idccid 16930   Func cfunc 17118  SetCatcsetc 17329  ExtStrCatcestrc 17366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-wun 10118  df-ni 10288  df-pli 10289  df-mi 10290  df-lti 10291  df-plpq 10324  df-mpq 10325  df-ltpq 10326  df-enq 10327  df-nq 10328  df-erq 10329  df-plq 10330  df-mq 10331  df-1nq 10332  df-rq 10333  df-ltnq 10334  df-np 10397  df-plp 10399  df-ltp 10401  df-enr 10471  df-nr 10472  df-c 10537  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-hom 16583  df-cco 16584  df-cat 16933  df-cid 16934  df-func 17122  df-setc 17330  df-estrc 17367
This theorem is referenced by:  fthsetcestrc  17409  fullsetcestrc  17410
  Copyright terms: Public domain W3C validator