| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | f1oi 6885 | . . . 4
⊢ ( I
↾ (𝑌
↑m 𝑋)):(𝑌 ↑m 𝑋)–1-1-onto→(𝑌 ↑m 𝑋) | 
| 2 |  | f1of 6847 | . . . 4
⊢ (( I
↾ (𝑌
↑m 𝑋)):(𝑌 ↑m 𝑋)–1-1-onto→(𝑌 ↑m 𝑋) → ( I ↾ (𝑌 ↑m 𝑋)):(𝑌 ↑m 𝑋)⟶(𝑌 ↑m 𝑋)) | 
| 3 | 1, 2 | mp1i 13 | . . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ( I ↾ (𝑌 ↑m 𝑋)):(𝑌 ↑m 𝑋)⟶(𝑌 ↑m 𝑋)) | 
| 4 |  | elmapi 8890 | . . . . 5
⊢ (𝑓 ∈ (𝑌 ↑m 𝑋) → 𝑓:𝑋⟶𝑌) | 
| 5 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) | 
| 6 | 5 | ancomd 461 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑌 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶)) | 
| 7 |  | elmapg 8880 | . . . . . . . . 9
⊢ ((𝑌 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶) → (𝑓 ∈ (𝑌 ↑m 𝑋) ↔ 𝑓:𝑋⟶𝑌)) | 
| 8 | 6, 7 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑓 ∈ (𝑌 ↑m 𝑋) ↔ 𝑓:𝑋⟶𝑌)) | 
| 9 | 8 | biimpar 477 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ 𝑓:𝑋⟶𝑌) → 𝑓 ∈ (𝑌 ↑m 𝑋)) | 
| 10 |  | funcsetcestrc.s | . . . . . . . . . . . . 13
⊢ 𝑆 = (SetCat‘𝑈) | 
| 11 |  | funcsetcestrc.c | . . . . . . . . . . . . 13
⊢ 𝐶 = (Base‘𝑆) | 
| 12 |  | funcsetcestrc.f | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | 
| 13 | 10, 11, 12 | funcsetcestrclem1 18200 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐶) → (𝐹‘𝑌) = {〈(Base‘ndx), 𝑌〉}) | 
| 14 | 13 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐶) → (Base‘(𝐹‘𝑌)) = (Base‘{〈(Base‘ndx),
𝑌〉})) | 
| 15 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
{〈(Base‘ndx), 𝑌〉} = {〈(Base‘ndx), 𝑌〉} | 
| 16 | 15 | 1strbas 17264 | . . . . . . . . . . . . 13
⊢ (𝑌 ∈ 𝐶 → 𝑌 = (Base‘{〈(Base‘ndx),
𝑌〉})) | 
| 17 | 16 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ (𝑌 ∈ 𝐶 → (Base‘{〈(Base‘ndx),
𝑌〉}) = 𝑌) | 
| 18 | 17 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐶) →
(Base‘{〈(Base‘ndx), 𝑌〉}) = 𝑌) | 
| 19 | 14, 18 | eqtrd 2776 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐶) → (Base‘(𝐹‘𝑌)) = 𝑌) | 
| 20 | 19 | adantrl 716 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (Base‘(𝐹‘𝑌)) = 𝑌) | 
| 21 | 10, 11, 12 | funcsetcestrclem1 18200 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) | 
| 22 | 21 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (Base‘(𝐹‘𝑋)) = (Base‘{〈(Base‘ndx),
𝑋〉})) | 
| 23 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
{〈(Base‘ndx), 𝑋〉} = {〈(Base‘ndx), 𝑋〉} | 
| 24 | 23 | 1strbas 17264 | . . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐶 → 𝑋 = (Base‘{〈(Base‘ndx),
𝑋〉})) | 
| 25 | 24 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 = (Base‘{〈(Base‘ndx),
𝑋〉})) | 
| 26 | 22, 25 | eqtr4d 2779 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (Base‘(𝐹‘𝑋)) = 𝑋) | 
| 27 | 26 | adantrr 717 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (Base‘(𝐹‘𝑋)) = 𝑋) | 
| 28 | 20, 27 | oveq12d 7450 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋))) = (𝑌 ↑m 𝑋)) | 
| 29 | 28 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ 𝑓:𝑋⟶𝑌) → ((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋))) = (𝑌 ↑m 𝑋)) | 
| 30 | 9, 29 | eleqtrrd 2843 | . . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ 𝑓:𝑋⟶𝑌) → 𝑓 ∈ ((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋)))) | 
| 31 | 30 | ex 412 | . . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑓:𝑋⟶𝑌 → 𝑓 ∈ ((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋))))) | 
| 32 | 4, 31 | syl5 34 | . . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑓 ∈ (𝑌 ↑m 𝑋) → 𝑓 ∈ ((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋))))) | 
| 33 | 32 | ssrdv 3988 | . . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑌 ↑m 𝑋) ⊆ ((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋)))) | 
| 34 | 3, 33 | fssd 6752 | . 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ( I ↾ (𝑌 ↑m 𝑋)):(𝑌 ↑m 𝑋)⟶((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋)))) | 
| 35 |  | funcsetcestrc.u | . . . 4
⊢ (𝜑 → 𝑈 ∈ WUni) | 
| 36 |  | funcsetcestrc.o | . . . 4
⊢ (𝜑 → ω ∈ 𝑈) | 
| 37 |  | funcsetcestrc.g | . . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | 
| 38 | 10, 11, 12, 35, 36, 37 | funcsetcestrclem5 18205 | . . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) | 
| 39 | 35 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑈 ∈ WUni) | 
| 40 |  | eqid 2736 | . . . 4
⊢ (Hom
‘𝑆) = (Hom
‘𝑆) | 
| 41 | 10, 35 | setcbas 18124 | . . . . . . . . 9
⊢ (𝜑 → 𝑈 = (Base‘𝑆)) | 
| 42 | 11, 41 | eqtr4id 2795 | . . . . . . . 8
⊢ (𝜑 → 𝐶 = 𝑈) | 
| 43 | 42 | eleq2d 2826 | . . . . . . 7
⊢ (𝜑 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈)) | 
| 44 | 43 | biimpd 229 | . . . . . 6
⊢ (𝜑 → (𝑋 ∈ 𝐶 → 𝑋 ∈ 𝑈)) | 
| 45 | 44 | adantrd 491 | . . . . 5
⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑋 ∈ 𝑈)) | 
| 46 | 45 | imp 406 | . . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝑈) | 
| 47 | 42 | eleq2d 2826 | . . . . . . 7
⊢ (𝜑 → (𝑌 ∈ 𝐶 ↔ 𝑌 ∈ 𝑈)) | 
| 48 | 47 | biimpd 229 | . . . . . 6
⊢ (𝜑 → (𝑌 ∈ 𝐶 → 𝑌 ∈ 𝑈)) | 
| 49 | 48 | adantld 490 | . . . . 5
⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑌 ∈ 𝑈)) | 
| 50 | 49 | imp 406 | . . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝑈) | 
| 51 | 10, 39, 40, 46, 50 | setchom 18126 | . . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌 ↑m 𝑋)) | 
| 52 |  | funcsetcestrc.e | . . . 4
⊢ 𝐸 = (ExtStrCat‘𝑈) | 
| 53 |  | eqid 2736 | . . . 4
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) | 
| 54 | 10, 11, 12, 35, 36 | funcsetcestrclem2 18201 | . . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ 𝑈) | 
| 55 | 54 | adantrr 717 | . . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝐹‘𝑋) ∈ 𝑈) | 
| 56 | 10, 11, 12, 35, 36 | funcsetcestrclem2 18201 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐶) → (𝐹‘𝑌) ∈ 𝑈) | 
| 57 | 56 | adantrl 716 | . . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝐹‘𝑌) ∈ 𝑈) | 
| 58 |  | eqid 2736 | . . . 4
⊢
(Base‘(𝐹‘𝑋)) = (Base‘(𝐹‘𝑋)) | 
| 59 |  | eqid 2736 | . . . 4
⊢
(Base‘(𝐹‘𝑌)) = (Base‘(𝐹‘𝑌)) | 
| 60 | 52, 39, 53, 55, 57, 58, 59 | estrchom 18172 | . . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌)) = ((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋)))) | 
| 61 | 38, 51, 60 | feq123d 6724 | . 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌)) ↔ ( I ↾ (𝑌 ↑m 𝑋)):(𝑌 ↑m 𝑋)⟶((Base‘(𝐹‘𝑌)) ↑m (Base‘(𝐹‘𝑋))))) | 
| 62 | 34, 61 | mpbird 257 | 1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌))) |