MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem8 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem8 17879
Description: Lemma 8 for funcsetcestrc 17881. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6754 . . . 4 ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)–1-1-onto→(𝑌m 𝑋)
2 f1of 6716 . . . 4 (( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)–1-1-onto→(𝑌m 𝑋) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶(𝑌m 𝑋))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶(𝑌m 𝑋))
4 elmapi 8637 . . . . 5 (𝑓 ∈ (𝑌m 𝑋) → 𝑓:𝑋𝑌)
5 simpr 485 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐶𝑌𝐶))
65ancomd 462 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌𝐶𝑋𝐶))
7 elmapg 8628 . . . . . . . . 9 ((𝑌𝐶𝑋𝐶) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
86, 7syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
98biimpar 478 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ (𝑌m 𝑋))
10 funcsetcestrc.s . . . . . . . . . . . . 13 𝑆 = (SetCat‘𝑈)
11 funcsetcestrc.c . . . . . . . . . . . . 13 𝐶 = (Base‘𝑆)
12 funcsetcestrc.f . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
1310, 11, 12funcsetcestrclem1 17871 . . . . . . . . . . . 12 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
1413fveq2d 6778 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
15 eqid 2738 . . . . . . . . . . . . . 14 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
16151strbas 16929 . . . . . . . . . . . . 13 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
1716eqcomd 2744 . . . . . . . . . . . 12 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1817adantl 482 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1914, 18eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = 𝑌)
2019adantrl 713 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
2110, 11, 12funcsetcestrclem1 17871 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
2221fveq2d 6778 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
23 eqid 2738 . . . . . . . . . . . . 13 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
24231strbas 16929 . . . . . . . . . . . 12 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2524adantl 482 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2622, 25eqtr4d 2781 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = 𝑋)
2726adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
2820, 27oveq12d 7293 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))) = (𝑌m 𝑋))
2928adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))) = (𝑌m 𝑋))
309, 29eleqtrrd 2842 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
3130ex 413 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓:𝑋𝑌𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
324, 31syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌m 𝑋) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
3332ssrdv 3927 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌m 𝑋) ⊆ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
343, 33fssd 6618 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
35 funcsetcestrc.u . . . 4 (𝜑𝑈 ∈ WUni)
36 funcsetcestrc.o . . . 4 (𝜑 → ω ∈ 𝑈)
37 funcsetcestrc.g . . . 4 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
3810, 11, 12, 35, 36, 37funcsetcestrclem5 17876 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌m 𝑋)))
3935adantr 481 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑈 ∈ WUni)
40 eqid 2738 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4110, 35setcbas 17793 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
4211, 41eqtr4id 2797 . . . . . . . 8 (𝜑𝐶 = 𝑈)
4342eleq2d 2824 . . . . . . 7 (𝜑 → (𝑋𝐶𝑋𝑈))
4443biimpd 228 . . . . . 6 (𝜑 → (𝑋𝐶𝑋𝑈))
4544adantrd 492 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑋𝑈))
4645imp 407 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝑈)
4742eleq2d 2824 . . . . . . 7 (𝜑 → (𝑌𝐶𝑌𝑈))
4847biimpd 228 . . . . . 6 (𝜑 → (𝑌𝐶𝑌𝑈))
4948adantld 491 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑌𝑈))
5049imp 407 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝑈)
5110, 39, 40, 46, 50setchom 17795 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌m 𝑋))
52 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2738 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5410, 11, 12, 35, 36funcsetcestrclem2 17872 . . . . 5 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
5554adantrr 714 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑋) ∈ 𝑈)
5610, 11, 12, 35, 36funcsetcestrclem2 17872 . . . . 5 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
5756adantrl 713 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑌) ∈ 𝑈)
58 eqid 2738 . . . 4 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
59 eqid 2738 . . . 4 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
6052, 39, 53, 55, 57, 58, 59estrchom 17843 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) = ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
6138, 51, 60feq123d 6589 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) ↔ ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
6234, 61mpbird 256 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {csn 4561  cop 4567  cmpt 5157   I cid 5488  cres 5591  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  m cmap 8615  WUnicwun 10456  ndxcnx 16894  Basecbs 16912  Hom chom 16973  SetCatcsetc 17790  ExtStrCatcestrc 17838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-wun 10458  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-plp 10739  df-ltp 10741  df-enr 10811  df-nr 10812  df-c 10877  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-setc 17791  df-estrc 17839
This theorem is referenced by:  funcsetcestrc  17881  fthsetcestrc  17882  fullsetcestrc  17883
  Copyright terms: Public domain W3C validator