MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem8 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem8 17701
Description: Lemma 8 for funcsetcestrc 17703. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6719 . . . 4 ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)–1-1-onto→(𝑌m 𝑋)
2 f1of 6682 . . . 4 (( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)–1-1-onto→(𝑌m 𝑋) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶(𝑌m 𝑋))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶(𝑌m 𝑋))
4 elmapi 8553 . . . . 5 (𝑓 ∈ (𝑌m 𝑋) → 𝑓:𝑋𝑌)
5 simpr 488 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐶𝑌𝐶))
65ancomd 465 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌𝐶𝑋𝐶))
7 elmapg 8544 . . . . . . . . 9 ((𝑌𝐶𝑋𝐶) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
86, 7syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
98biimpar 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ (𝑌m 𝑋))
10 funcsetcestrc.s . . . . . . . . . . . . 13 𝑆 = (SetCat‘𝑈)
11 funcsetcestrc.c . . . . . . . . . . . . 13 𝐶 = (Base‘𝑆)
12 funcsetcestrc.f . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
1310, 11, 12funcsetcestrclem1 17693 . . . . . . . . . . . 12 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
1413fveq2d 6742 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
15 eqid 2739 . . . . . . . . . . . . . 14 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
16151strbas 16807 . . . . . . . . . . . . 13 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
1716eqcomd 2745 . . . . . . . . . . . 12 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1817adantl 485 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1914, 18eqtrd 2779 . . . . . . . . . 10 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = 𝑌)
2019adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
2110, 11, 12funcsetcestrclem1 17693 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
2221fveq2d 6742 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
23 eqid 2739 . . . . . . . . . . . . 13 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
24231strbas 16807 . . . . . . . . . . . 12 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2524adantl 485 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2622, 25eqtr4d 2782 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = 𝑋)
2726adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
2820, 27oveq12d 7252 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))) = (𝑌m 𝑋))
2928adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))) = (𝑌m 𝑋))
309, 29eleqtrrd 2843 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
3130ex 416 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓:𝑋𝑌𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
324, 31syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌m 𝑋) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
3332ssrdv 3923 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌m 𝑋) ⊆ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
343, 33fssd 6584 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
35 funcsetcestrc.u . . . 4 (𝜑𝑈 ∈ WUni)
36 funcsetcestrc.o . . . 4 (𝜑 → ω ∈ 𝑈)
37 funcsetcestrc.g . . . 4 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
3810, 11, 12, 35, 36, 37funcsetcestrclem5 17698 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌m 𝑋)))
3935adantr 484 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑈 ∈ WUni)
40 eqid 2739 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4110, 35setcbas 17616 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
4211, 41eqtr4id 2799 . . . . . . . 8 (𝜑𝐶 = 𝑈)
4342eleq2d 2825 . . . . . . 7 (𝜑 → (𝑋𝐶𝑋𝑈))
4443biimpd 232 . . . . . 6 (𝜑 → (𝑋𝐶𝑋𝑈))
4544adantrd 495 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑋𝑈))
4645imp 410 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝑈)
4742eleq2d 2825 . . . . . . 7 (𝜑 → (𝑌𝐶𝑌𝑈))
4847biimpd 232 . . . . . 6 (𝜑 → (𝑌𝐶𝑌𝑈))
4948adantld 494 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑌𝑈))
5049imp 410 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝑈)
5110, 39, 40, 46, 50setchom 17618 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌m 𝑋))
52 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2739 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5410, 11, 12, 35, 36funcsetcestrclem2 17694 . . . . 5 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
5554adantrr 717 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑋) ∈ 𝑈)
5610, 11, 12, 35, 36funcsetcestrclem2 17694 . . . . 5 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
5756adantrl 716 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑌) ∈ 𝑈)
58 eqid 2739 . . . 4 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
59 eqid 2739 . . . 4 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
6052, 39, 53, 55, 57, 58, 59estrchom 17666 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) = ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
6138, 51, 60feq123d 6555 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) ↔ ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
6234, 61mpbird 260 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  {csn 4557  cop 4563  cmpt 5151   I cid 5470  cres 5570  wf 6396  1-1-ontowf1o 6399  cfv 6400  (class class class)co 7234  cmpo 7236  ωcom 7665  m cmap 8531  WUnicwun 10343  ndxcnx 16776  Basecbs 16792  Hom chom 16845  SetCatcsetc 17613  ExtStrCatcestrc 17661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-inf2 9285  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-oadd 8229  df-omul 8230  df-er 8414  df-ec 8416  df-qs 8420  df-map 8533  df-pm 8534  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-wun 10345  df-ni 10515  df-pli 10516  df-mi 10517  df-lti 10518  df-plpq 10551  df-mpq 10552  df-ltpq 10553  df-enq 10554  df-nq 10555  df-erq 10556  df-plq 10557  df-mq 10558  df-1nq 10559  df-rq 10560  df-ltnq 10561  df-np 10624  df-plp 10626  df-ltp 10628  df-enr 10698  df-nr 10699  df-c 10764  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-nn 11860  df-2 11922  df-3 11923  df-4 11924  df-5 11925  df-6 11926  df-7 11927  df-8 11928  df-9 11929  df-n0 12120  df-z 12206  df-dec 12323  df-uz 12468  df-fz 13125  df-struct 16732  df-slot 16767  df-ndx 16777  df-base 16793  df-hom 16858  df-cco 16859  df-setc 17614  df-estrc 17662
This theorem is referenced by:  funcsetcestrc  17703  fthsetcestrc  17704  fullsetcestrc  17705
  Copyright terms: Public domain W3C validator