MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem8 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem8 17412
Description: Lemma 8 for funcsetcestrc 17414. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6643 . . . 4 ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)–1-1-onto→(𝑌m 𝑋)
2 f1of 6606 . . . 4 (( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)–1-1-onto→(𝑌m 𝑋) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶(𝑌m 𝑋))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶(𝑌m 𝑋))
4 elmapi 8424 . . . . 5 (𝑓 ∈ (𝑌m 𝑋) → 𝑓:𝑋𝑌)
5 simpr 488 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐶𝑌𝐶))
65ancomd 465 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌𝐶𝑋𝐶))
7 elmapg 8415 . . . . . . . . 9 ((𝑌𝐶𝑋𝐶) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
86, 7syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
98biimpar 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ (𝑌m 𝑋))
10 funcsetcestrc.s . . . . . . . . . . . . 13 𝑆 = (SetCat‘𝑈)
11 funcsetcestrc.c . . . . . . . . . . . . 13 𝐶 = (Base‘𝑆)
12 funcsetcestrc.f . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
1310, 11, 12funcsetcestrclem1 17404 . . . . . . . . . . . 12 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
1413fveq2d 6665 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
15 eqid 2824 . . . . . . . . . . . . . 14 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
16151strbas 16599 . . . . . . . . . . . . 13 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
1716eqcomd 2830 . . . . . . . . . . . 12 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1817adantl 485 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1914, 18eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = 𝑌)
2019adantrl 715 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
2110, 11, 12funcsetcestrclem1 17404 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
2221fveq2d 6665 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
23 eqid 2824 . . . . . . . . . . . . 13 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
24231strbas 16599 . . . . . . . . . . . 12 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2524adantl 485 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2622, 25eqtr4d 2862 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = 𝑋)
2726adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
2820, 27oveq12d 7167 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))) = (𝑌m 𝑋))
2928adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))) = (𝑌m 𝑋))
309, 29eleqtrrd 2919 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
3130ex 416 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓:𝑋𝑌𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
324, 31syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌m 𝑋) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
3332ssrdv 3959 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌m 𝑋) ⊆ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
343, 33fssd 6518 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
35 funcsetcestrc.u . . . 4 (𝜑𝑈 ∈ WUni)
36 funcsetcestrc.o . . . 4 (𝜑 → ω ∈ 𝑈)
37 funcsetcestrc.g . . . 4 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
3810, 11, 12, 35, 36, 37funcsetcestrclem5 17409 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌m 𝑋)))
3935adantr 484 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑈 ∈ WUni)
40 eqid 2824 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4110, 35setcbas 17338 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
4241, 11syl6reqr 2878 . . . . . . . 8 (𝜑𝐶 = 𝑈)
4342eleq2d 2901 . . . . . . 7 (𝜑 → (𝑋𝐶𝑋𝑈))
4443biimpd 232 . . . . . 6 (𝜑 → (𝑋𝐶𝑋𝑈))
4544adantrd 495 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑋𝑈))
4645imp 410 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝑈)
4742eleq2d 2901 . . . . . . 7 (𝜑 → (𝑌𝐶𝑌𝑈))
4847biimpd 232 . . . . . 6 (𝜑 → (𝑌𝐶𝑌𝑈))
4948adantld 494 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑌𝑈))
5049imp 410 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝑈)
5110, 39, 40, 46, 50setchom 17340 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌m 𝑋))
52 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2824 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5410, 11, 12, 35, 36funcsetcestrclem2 17405 . . . . 5 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
5554adantrr 716 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑋) ∈ 𝑈)
5610, 11, 12, 35, 36funcsetcestrclem2 17405 . . . . 5 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
5756adantrl 715 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑌) ∈ 𝑈)
58 eqid 2824 . . . 4 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
59 eqid 2824 . . . 4 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
6052, 39, 53, 55, 57, 58, 59estrchom 17377 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) = ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
6138, 51, 60feq123d 6492 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) ↔ ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
6234, 61mpbird 260 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  {csn 4550  cop 4556  cmpt 5132   I cid 5446  cres 5544  wf 6339  1-1-ontowf1o 6342  cfv 6343  (class class class)co 7149  cmpo 7151  ωcom 7574  m cmap 8402  WUnicwun 10120  ndxcnx 16480  Basecbs 16483  Hom chom 16576  SetCatcsetc 17335  ExtStrCatcestrc 17372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-omul 8103  df-er 8285  df-ec 8287  df-qs 8291  df-map 8404  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-wun 10122  df-ni 10292  df-pli 10293  df-mi 10294  df-lti 10295  df-plpq 10328  df-mpq 10329  df-ltpq 10330  df-enq 10331  df-nq 10332  df-erq 10333  df-plq 10334  df-mq 10335  df-1nq 10336  df-rq 10337  df-ltnq 10338  df-np 10401  df-plp 10403  df-ltp 10405  df-enr 10475  df-nr 10476  df-c 10541  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-hom 16589  df-cco 16590  df-setc 17336  df-estrc 17373
This theorem is referenced by:  funcsetcestrc  17414  fthsetcestrc  17415  fullsetcestrc  17416
  Copyright terms: Public domain W3C validator