MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem8 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem8 17795
Description: Lemma 8 for funcsetcestrc 17797. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6737 . . . 4 ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)–1-1-onto→(𝑌m 𝑋)
2 f1of 6700 . . . 4 (( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)–1-1-onto→(𝑌m 𝑋) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶(𝑌m 𝑋))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶(𝑌m 𝑋))
4 elmapi 8595 . . . . 5 (𝑓 ∈ (𝑌m 𝑋) → 𝑓:𝑋𝑌)
5 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐶𝑌𝐶))
65ancomd 461 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌𝐶𝑋𝐶))
7 elmapg 8586 . . . . . . . . 9 ((𝑌𝐶𝑋𝐶) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
86, 7syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
98biimpar 477 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ (𝑌m 𝑋))
10 funcsetcestrc.s . . . . . . . . . . . . 13 𝑆 = (SetCat‘𝑈)
11 funcsetcestrc.c . . . . . . . . . . . . 13 𝐶 = (Base‘𝑆)
12 funcsetcestrc.f . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
1310, 11, 12funcsetcestrclem1 17787 . . . . . . . . . . . 12 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
1413fveq2d 6760 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
15 eqid 2738 . . . . . . . . . . . . . 14 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
16151strbas 16856 . . . . . . . . . . . . 13 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
1716eqcomd 2744 . . . . . . . . . . . 12 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1817adantl 481 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1914, 18eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = 𝑌)
2019adantrl 712 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
2110, 11, 12funcsetcestrclem1 17787 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
2221fveq2d 6760 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
23 eqid 2738 . . . . . . . . . . . . 13 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
24231strbas 16856 . . . . . . . . . . . 12 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2524adantl 481 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2622, 25eqtr4d 2781 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = 𝑋)
2726adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
2820, 27oveq12d 7273 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))) = (𝑌m 𝑋))
2928adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))) = (𝑌m 𝑋))
309, 29eleqtrrd 2842 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
3130ex 412 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓:𝑋𝑌𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
324, 31syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌m 𝑋) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
3332ssrdv 3923 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌m 𝑋) ⊆ ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
343, 33fssd 6602 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
35 funcsetcestrc.u . . . 4 (𝜑𝑈 ∈ WUni)
36 funcsetcestrc.o . . . 4 (𝜑 → ω ∈ 𝑈)
37 funcsetcestrc.g . . . 4 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
3810, 11, 12, 35, 36, 37funcsetcestrclem5 17792 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌m 𝑋)))
3935adantr 480 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑈 ∈ WUni)
40 eqid 2738 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4110, 35setcbas 17709 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
4211, 41eqtr4id 2798 . . . . . . . 8 (𝜑𝐶 = 𝑈)
4342eleq2d 2824 . . . . . . 7 (𝜑 → (𝑋𝐶𝑋𝑈))
4443biimpd 228 . . . . . 6 (𝜑 → (𝑋𝐶𝑋𝑈))
4544adantrd 491 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑋𝑈))
4645imp 406 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝑈)
4742eleq2d 2824 . . . . . . 7 (𝜑 → (𝑌𝐶𝑌𝑈))
4847biimpd 228 . . . . . 6 (𝜑 → (𝑌𝐶𝑌𝑈))
4948adantld 490 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑌𝑈))
5049imp 406 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝑈)
5110, 39, 40, 46, 50setchom 17711 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌m 𝑋))
52 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2738 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5410, 11, 12, 35, 36funcsetcestrclem2 17788 . . . . 5 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
5554adantrr 713 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑋) ∈ 𝑈)
5610, 11, 12, 35, 36funcsetcestrclem2 17788 . . . . 5 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
5756adantrl 712 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑌) ∈ 𝑈)
58 eqid 2738 . . . 4 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
59 eqid 2738 . . . 4 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
6052, 39, 53, 55, 57, 58, 59estrchom 17759 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) = ((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋))))
6138, 51, 60feq123d 6573 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) ↔ ( I ↾ (𝑌m 𝑋)):(𝑌m 𝑋)⟶((Base‘(𝐹𝑌)) ↑m (Base‘(𝐹𝑋)))))
6234, 61mpbird 256 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {csn 4558  cop 4564  cmpt 5153   I cid 5479  cres 5582  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687  m cmap 8573  WUnicwun 10387  ndxcnx 16822  Basecbs 16840  Hom chom 16899  SetCatcsetc 17706  ExtStrCatcestrc 17754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-wun 10389  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-plp 10670  df-ltp 10672  df-enr 10742  df-nr 10743  df-c 10808  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-setc 17707  df-estrc 17755
This theorem is referenced by:  funcsetcestrc  17797  fthsetcestrc  17798  fullsetcestrc  17799
  Copyright terms: Public domain W3C validator