| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setc1strwun | Structured version Visualization version GIF version | ||
| Description: A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| setc1strwun.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| setc1strwun.c | ⊢ 𝐶 = (Base‘𝑆) |
| setc1strwun.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| setc1strwun.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| Ref | Expression |
|---|---|
| setc1strwun | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setc1strwun.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
| 2 | setc1strwun.s | . . . . . 6 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 3 | setc1strwun.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 4 | 2, 3 | setcbas 18089 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
| 5 | 1, 4 | eqtr4id 2789 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑈) |
| 6 | 5 | eleq2d 2820 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈)) |
| 7 | 6 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑈) |
| 8 | eqid 2735 | . . 3 ⊢ {〈(Base‘ndx), 𝑋〉} = {〈(Base‘ndx), 𝑋〉} | |
| 9 | setc1strwun.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 10 | 8, 3, 9 | 1strwun 17245 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
| 11 | 7, 10 | syldan 591 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 〈cop 4607 ‘cfv 6530 ωcom 7859 WUnicwun 10712 ndxcnx 17210 Basecbs 17226 SetCatcsetc 18086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-omul 8483 df-er 8717 df-ec 8719 df-qs 8723 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-wun 10714 df-ni 10884 df-pli 10885 df-mi 10886 df-lti 10887 df-plpq 10920 df-mpq 10921 df-ltpq 10922 df-enq 10923 df-nq 10924 df-erq 10925 df-plq 10926 df-mq 10927 df-1nq 10928 df-rq 10929 df-ltnq 10930 df-np 10993 df-plp 10995 df-ltp 10997 df-enr 11067 df-nr 11068 df-c 11133 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-hom 17293 df-cco 17294 df-setc 18087 |
| This theorem is referenced by: funcsetcestrclem2 18165 funcsetcestrclem3 18166 funcsetcestrclem7 18171 |
| Copyright terms: Public domain | W3C validator |