Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setc1strwun | Structured version Visualization version GIF version |
Description: A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
setc1strwun.s | ⊢ 𝑆 = (SetCat‘𝑈) |
setc1strwun.c | ⊢ 𝐶 = (Base‘𝑆) |
setc1strwun.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
setc1strwun.o | ⊢ (𝜑 → ω ∈ 𝑈) |
Ref | Expression |
---|---|
setc1strwun | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setc1strwun.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
2 | setc1strwun.s | . . . . . 6 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | setc1strwun.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
4 | 2, 3 | setcbas 17417 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
5 | 1, 4 | eqtr4id 2812 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑈) |
6 | 5 | eleq2d 2837 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈)) |
7 | 6 | biimpa 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑈) |
8 | eqid 2758 | . . 3 ⊢ {〈(Base‘ndx), 𝑋〉} = {〈(Base‘ndx), 𝑋〉} | |
9 | setc1strwun.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
10 | 8, 3, 9 | 1strwun 16672 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
11 | 7, 10 | syldan 594 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {csn 4525 〈cop 4531 ‘cfv 6340 ωcom 7585 WUnicwun 10173 ndxcnx 16551 Basecbs 16554 SetCatcsetc 17414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-omul 8123 df-er 8305 df-ec 8307 df-qs 8311 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-wun 10175 df-ni 10345 df-pli 10346 df-mi 10347 df-lti 10348 df-plpq 10381 df-mpq 10382 df-ltpq 10383 df-enq 10384 df-nq 10385 df-erq 10386 df-plq 10387 df-mq 10388 df-1nq 10389 df-rq 10390 df-ltnq 10391 df-np 10454 df-plp 10456 df-ltp 10458 df-enr 10528 df-nr 10529 df-c 10594 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-hom 16660 df-cco 16661 df-setc 17415 |
This theorem is referenced by: funcsetcestrclem2 17484 funcsetcestrclem3 17485 funcsetcestrclem7 17490 |
Copyright terms: Public domain | W3C validator |