![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > p1evtxdeqlem | Structured version Visualization version GIF version |
Description: Lemma for p1evtxdeq 29549 and p1evtxdp1 29550. (Contributed by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
p1evtxdeq.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
Ref | Expression |
---|---|
p1evtxdeqlem | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p1evtxdeq.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | p1evtxdeq.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | fvexi 6934 | . . . 4 ⊢ 𝑉 ∈ V |
4 | snex 5451 | . . . 4 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
5 | 3, 4 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
6 | opiedgfv 29042 | . . . 4 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
7 | 6 | eqcomd 2746 | . . 3 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → {〈𝐾, 𝐸〉} = (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ {〈𝐾, 𝐸〉} = (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) |
9 | opvtxfv 29039 | . . 3 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
10 | 5, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
11 | p1evtxdeq.fv | . 2 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
12 | p1evtxdeq.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
13 | dmsnopg 6244 | . . . . 5 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐾, 𝐸〉} = {𝐾}) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐾, 𝐸〉} = {𝐾}) |
15 | 14 | ineq2d 4241 | . . 3 ⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐾, 𝐸〉}) = (dom 𝐼 ∩ {𝐾})) |
16 | p1evtxdeq.d | . . . . 5 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
17 | df-nel 3053 | . . . . 5 ⊢ (𝐾 ∉ dom 𝐼 ↔ ¬ 𝐾 ∈ dom 𝐼) | |
18 | 16, 17 | sylib 218 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∈ dom 𝐼) |
19 | disjsn 4736 | . . . 4 ⊢ ((dom 𝐼 ∩ {𝐾}) = ∅ ↔ ¬ 𝐾 ∈ dom 𝐼) | |
20 | 18, 19 | sylibr 234 | . . 3 ⊢ (𝜑 → (dom 𝐼 ∩ {𝐾}) = ∅) |
21 | 15, 20 | eqtrd 2780 | . 2 ⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐾, 𝐸〉}) = ∅) |
22 | p1evtxdeq.f | . 2 ⊢ (𝜑 → Fun 𝐼) | |
23 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
24 | funsng 6629 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → Fun {〈𝐾, 𝐸〉}) | |
25 | 23, 12, 24 | syl2anc 583 | . 2 ⊢ (𝜑 → Fun {〈𝐾, 𝐸〉}) |
26 | p1evtxdeq.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
27 | p1evtxdeq.fi | . 2 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
28 | 1, 8, 2, 10, 11, 21, 22, 25, 26, 27 | vtxdun 29517 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 〈cop 4654 dom cdm 5700 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 +𝑒 cxad 13173 Vtxcvtx 29031 iEdgciedg 29032 VtxDegcvtxdg 29501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-xadd 13176 df-hash 14380 df-vtx 29033 df-iedg 29034 df-vtxdg 29502 |
This theorem is referenced by: p1evtxdeq 29549 p1evtxdp1 29550 |
Copyright terms: Public domain | W3C validator |