Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p1evtxdeqlem | Structured version Visualization version GIF version |
Description: Lemma for p1evtxdeq 27783 and p1evtxdp1 27784. (Contributed by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
p1evtxdeq.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
Ref | Expression |
---|---|
p1evtxdeqlem | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p1evtxdeq.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | p1evtxdeq.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | fvexi 6770 | . . . 4 ⊢ 𝑉 ∈ V |
4 | snex 5349 | . . . 4 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
5 | 3, 4 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
6 | opiedgfv 27280 | . . . 4 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
7 | 6 | eqcomd 2744 | . . 3 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → {〈𝐾, 𝐸〉} = (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ {〈𝐾, 𝐸〉} = (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) |
9 | opvtxfv 27277 | . . 3 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
10 | 5, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
11 | p1evtxdeq.fv | . 2 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
12 | p1evtxdeq.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
13 | dmsnopg 6105 | . . . . 5 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐾, 𝐸〉} = {𝐾}) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐾, 𝐸〉} = {𝐾}) |
15 | 14 | ineq2d 4143 | . . 3 ⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐾, 𝐸〉}) = (dom 𝐼 ∩ {𝐾})) |
16 | p1evtxdeq.d | . . . . 5 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
17 | df-nel 3049 | . . . . 5 ⊢ (𝐾 ∉ dom 𝐼 ↔ ¬ 𝐾 ∈ dom 𝐼) | |
18 | 16, 17 | sylib 217 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∈ dom 𝐼) |
19 | disjsn 4644 | . . . 4 ⊢ ((dom 𝐼 ∩ {𝐾}) = ∅ ↔ ¬ 𝐾 ∈ dom 𝐼) | |
20 | 18, 19 | sylibr 233 | . . 3 ⊢ (𝜑 → (dom 𝐼 ∩ {𝐾}) = ∅) |
21 | 15, 20 | eqtrd 2778 | . 2 ⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐾, 𝐸〉}) = ∅) |
22 | p1evtxdeq.f | . 2 ⊢ (𝜑 → Fun 𝐼) | |
23 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
24 | funsng 6469 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → Fun {〈𝐾, 𝐸〉}) | |
25 | 23, 12, 24 | syl2anc 583 | . 2 ⊢ (𝜑 → Fun {〈𝐾, 𝐸〉}) |
26 | p1evtxdeq.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
27 | p1evtxdeq.fi | . 2 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
28 | 1, 8, 2, 10, 11, 21, 22, 25, 26, 27 | vtxdun 27751 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 〈cop 4564 dom cdm 5580 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 +𝑒 cxad 12775 Vtxcvtx 27269 iEdgciedg 27270 VtxDegcvtxdg 27735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-hash 13973 df-vtx 27271 df-iedg 27272 df-vtxdg 27736 |
This theorem is referenced by: p1evtxdeq 27783 p1evtxdp1 27784 |
Copyright terms: Public domain | W3C validator |