MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1evtxdeqlem Structured version   Visualization version   GIF version

Theorem p1evtxdeqlem 29545
Description: Lemma for p1evtxdeq 29546 and p1evtxdp1 29547. (Contributed by AV, 3-Mar-2021.)
Hypotheses
Ref Expression
p1evtxdeq.v 𝑉 = (Vtx‘𝐺)
p1evtxdeq.i 𝐼 = (iEdg‘𝐺)
p1evtxdeq.f (𝜑 → Fun 𝐼)
p1evtxdeq.fv (𝜑 → (Vtx‘𝐹) = 𝑉)
p1evtxdeq.fi (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {⟨𝐾, 𝐸⟩}))
p1evtxdeq.k (𝜑𝐾𝑋)
p1evtxdeq.d (𝜑𝐾 ∉ dom 𝐼)
p1evtxdeq.u (𝜑𝑈𝑉)
p1evtxdeq.e (𝜑𝐸𝑌)
Assertion
Ref Expression
p1evtxdeqlem (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈)))

Proof of Theorem p1evtxdeqlem
StepHypRef Expression
1 p1evtxdeq.i . 2 𝐼 = (iEdg‘𝐺)
2 p1evtxdeq.v . . . . 5 𝑉 = (Vtx‘𝐺)
32fvexi 6921 . . . 4 𝑉 ∈ V
4 snex 5442 . . . 4 {⟨𝐾, 𝐸⟩} ∈ V
53, 4pm3.2i 470 . . 3 (𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V)
6 opiedgfv 29039 . . . 4 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = {⟨𝐾, 𝐸⟩})
76eqcomd 2741 . . 3 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → {⟨𝐾, 𝐸⟩} = (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩))
85, 7ax-mp 5 . 2 {⟨𝐾, 𝐸⟩} = (iEdg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)
9 opvtxfv 29036 . . 3 ((𝑉 ∈ V ∧ {⟨𝐾, 𝐸⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = 𝑉)
105, 9mp1i 13 . 2 (𝜑 → (Vtx‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩) = 𝑉)
11 p1evtxdeq.fv . 2 (𝜑 → (Vtx‘𝐹) = 𝑉)
12 p1evtxdeq.e . . . . 5 (𝜑𝐸𝑌)
13 dmsnopg 6235 . . . . 5 (𝐸𝑌 → dom {⟨𝐾, 𝐸⟩} = {𝐾})
1412, 13syl 17 . . . 4 (𝜑 → dom {⟨𝐾, 𝐸⟩} = {𝐾})
1514ineq2d 4228 . . 3 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐾, 𝐸⟩}) = (dom 𝐼 ∩ {𝐾}))
16 p1evtxdeq.d . . . . 5 (𝜑𝐾 ∉ dom 𝐼)
17 df-nel 3045 . . . . 5 (𝐾 ∉ dom 𝐼 ↔ ¬ 𝐾 ∈ dom 𝐼)
1816, 17sylib 218 . . . 4 (𝜑 → ¬ 𝐾 ∈ dom 𝐼)
19 disjsn 4716 . . . 4 ((dom 𝐼 ∩ {𝐾}) = ∅ ↔ ¬ 𝐾 ∈ dom 𝐼)
2018, 19sylibr 234 . . 3 (𝜑 → (dom 𝐼 ∩ {𝐾}) = ∅)
2115, 20eqtrd 2775 . 2 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐾, 𝐸⟩}) = ∅)
22 p1evtxdeq.f . 2 (𝜑 → Fun 𝐼)
23 p1evtxdeq.k . . 3 (𝜑𝐾𝑋)
24 funsng 6619 . . 3 ((𝐾𝑋𝐸𝑌) → Fun {⟨𝐾, 𝐸⟩})
2523, 12, 24syl2anc 584 . 2 (𝜑 → Fun {⟨𝐾, 𝐸⟩})
26 p1evtxdeq.u . 2 (𝜑𝑈𝑉)
27 p1evtxdeq.fi . 2 (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {⟨𝐾, 𝐸⟩}))
281, 8, 2, 10, 11, 21, 22, 25, 26, 27vtxdun 29514 1 (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘⟨𝑉, {⟨𝐾, 𝐸⟩}⟩)‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wnel 3044  Vcvv 3478  cun 3961  cin 3962  c0 4339  {csn 4631  cop 4637  dom cdm 5689  Fun wfun 6557  cfv 6563  (class class class)co 7431   +𝑒 cxad 13150  Vtxcvtx 29028  iEdgciedg 29029  VtxDegcvtxdg 29498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-xadd 13153  df-hash 14367  df-vtx 29030  df-iedg 29031  df-vtxdg 29499
This theorem is referenced by:  p1evtxdeq  29546  p1evtxdp1  29547
  Copyright terms: Public domain W3C validator