Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p1evtxdeqlem | Structured version Visualization version GIF version |
Description: Lemma for p1evtxdeq 27395 and p1evtxdp1 27396. (Contributed by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
p1evtxdeq.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
Ref | Expression |
---|---|
p1evtxdeqlem | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p1evtxdeq.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | p1evtxdeq.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | fvexi 6673 | . . . 4 ⊢ 𝑉 ∈ V |
4 | snex 5301 | . . . 4 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
5 | 3, 4 | pm3.2i 475 | . . 3 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
6 | opiedgfv 26892 | . . . 4 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
7 | 6 | eqcomd 2765 | . . 3 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → {〈𝐾, 𝐸〉} = (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ {〈𝐾, 𝐸〉} = (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) |
9 | opvtxfv 26889 | . . 3 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
10 | 5, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
11 | p1evtxdeq.fv | . 2 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
12 | p1evtxdeq.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
13 | dmsnopg 6043 | . . . . 5 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐾, 𝐸〉} = {𝐾}) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐾, 𝐸〉} = {𝐾}) |
15 | 14 | ineq2d 4118 | . . 3 ⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐾, 𝐸〉}) = (dom 𝐼 ∩ {𝐾})) |
16 | p1evtxdeq.d | . . . . 5 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
17 | df-nel 3057 | . . . . 5 ⊢ (𝐾 ∉ dom 𝐼 ↔ ¬ 𝐾 ∈ dom 𝐼) | |
18 | 16, 17 | sylib 221 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∈ dom 𝐼) |
19 | disjsn 4605 | . . . 4 ⊢ ((dom 𝐼 ∩ {𝐾}) = ∅ ↔ ¬ 𝐾 ∈ dom 𝐼) | |
20 | 18, 19 | sylibr 237 | . . 3 ⊢ (𝜑 → (dom 𝐼 ∩ {𝐾}) = ∅) |
21 | 15, 20 | eqtrd 2794 | . 2 ⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐾, 𝐸〉}) = ∅) |
22 | p1evtxdeq.f | . 2 ⊢ (𝜑 → Fun 𝐼) | |
23 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
24 | funsng 6387 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → Fun {〈𝐾, 𝐸〉}) | |
25 | 23, 12, 24 | syl2anc 588 | . 2 ⊢ (𝜑 → Fun {〈𝐾, 𝐸〉}) |
26 | p1evtxdeq.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
27 | p1evtxdeq.fi | . 2 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
28 | 1, 8, 2, 10, 11, 21, 22, 25, 26, 27 | vtxdun 27363 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∉ wnel 3056 Vcvv 3410 ∪ cun 3857 ∩ cin 3858 ∅c0 4226 {csn 4523 〈cop 4529 dom cdm 5525 Fun wfun 6330 ‘cfv 6336 (class class class)co 7151 +𝑒 cxad 12539 Vtxcvtx 26881 iEdgciedg 26882 VtxDegcvtxdg 27347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-dju 9356 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-n0 11928 df-xnn0 12000 df-z 12014 df-uz 12276 df-xadd 12542 df-hash 13734 df-vtx 26883 df-iedg 26884 df-vtxdg 27348 |
This theorem is referenced by: p1evtxdeq 27395 p1evtxdp1 27396 |
Copyright terms: Public domain | W3C validator |