| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p1evtxdeqlem | Structured version Visualization version GIF version | ||
| Description: Lemma for p1evtxdeq 29441 and p1evtxdp1 29442. (Contributed by AV, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
| p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
| p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
| p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
| p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| p1evtxdeq.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| p1evtxdeqlem | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p1evtxdeq.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | p1evtxdeq.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | fvexi 6872 | . . . 4 ⊢ 𝑉 ∈ V |
| 4 | snex 5391 | . . . 4 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
| 5 | 3, 4 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
| 6 | opiedgfv 28934 | . . . 4 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
| 7 | 6 | eqcomd 2735 | . . 3 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → {〈𝐾, 𝐸〉} = (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉)) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ {〈𝐾, 𝐸〉} = (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) |
| 9 | opvtxfv 28931 | . . 3 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
| 10 | 5, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
| 11 | p1evtxdeq.fv | . 2 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
| 12 | p1evtxdeq.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
| 13 | dmsnopg 6186 | . . . . 5 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐾, 𝐸〉} = {𝐾}) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐾, 𝐸〉} = {𝐾}) |
| 15 | 14 | ineq2d 4183 | . . 3 ⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐾, 𝐸〉}) = (dom 𝐼 ∩ {𝐾})) |
| 16 | p1evtxdeq.d | . . . . 5 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
| 17 | df-nel 3030 | . . . . 5 ⊢ (𝐾 ∉ dom 𝐼 ↔ ¬ 𝐾 ∈ dom 𝐼) | |
| 18 | 16, 17 | sylib 218 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∈ dom 𝐼) |
| 19 | disjsn 4675 | . . . 4 ⊢ ((dom 𝐼 ∩ {𝐾}) = ∅ ↔ ¬ 𝐾 ∈ dom 𝐼) | |
| 20 | 18, 19 | sylibr 234 | . . 3 ⊢ (𝜑 → (dom 𝐼 ∩ {𝐾}) = ∅) |
| 21 | 15, 20 | eqtrd 2764 | . 2 ⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐾, 𝐸〉}) = ∅) |
| 22 | p1evtxdeq.f | . 2 ⊢ (𝜑 → Fun 𝐼) | |
| 23 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
| 24 | funsng 6567 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → Fun {〈𝐾, 𝐸〉}) | |
| 25 | 23, 12, 24 | syl2anc 584 | . 2 ⊢ (𝜑 → Fun {〈𝐾, 𝐸〉}) |
| 26 | p1evtxdeq.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 27 | p1evtxdeq.fi | . 2 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
| 28 | 1, 8, 2, 10, 11, 21, 22, 25, 26, 27 | vtxdun 29409 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 ∅c0 4296 {csn 4589 〈cop 4595 dom cdm 5638 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 +𝑒 cxad 13070 Vtxcvtx 28923 iEdgciedg 28924 VtxDegcvtxdg 29393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-xadd 13073 df-hash 14296 df-vtx 28925 df-iedg 28926 df-vtxdg 29394 |
| This theorem is referenced by: p1evtxdeq 29441 p1evtxdp1 29442 |
| Copyright terms: Public domain | W3C validator |