MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlval Structured version   Visualization version   GIF version

Theorem lidlval 21113
Description: Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
lidlval (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))

Proof of Theorem lidlval
StepHypRef Expression
1 df-lidl 21111 . . 3 LIdeal = (LSubSp ∘ ringLMod)
21fveq1i 6903 . 2 (LIdeal‘𝑊) = ((LSubSp ∘ ringLMod)‘𝑊)
3 00lss 20832 . . 3 ∅ = (LSubSp‘∅)
4 rlmfn 21090 . . . 4 ringLMod Fn V
5 fnfun 6659 . . . 4 (ringLMod Fn V → Fun ringLMod)
64, 5ax-mp 5 . . 3 Fun ringLMod
73, 6fvco4i 7004 . 2 ((LSubSp ∘ ringLMod)‘𝑊) = (LSubSp‘(ringLMod‘𝑊))
82, 7eqtri 2756 1 (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3473  ccom 5686  Fun wfun 6547   Fn wfn 6548  cfv 6553  LSubSpclss 20822  ringLModcrglmod 21064  LIdealclidl 21109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-1cn 11204  ax-addcl 11206
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-nn 12251  df-slot 17158  df-ndx 17170  df-base 17188  df-lss 20823  df-rgmod 21066  df-lidl 21111
This theorem is referenced by:  lidlss  21115  islidl  21118  lidl0cl  21123  lidlacl  21124  lidlnegcl  21125  lidl0ALT  21131  lidl1ALT  21134  lidlacs  21137  rspcl  21138  rspssp  21142  mrcrsp  21143  lidlrsppropd  21146  lsmidllsp  33134  lsmidl  33135  islnr2  42569
  Copyright terms: Public domain W3C validator