![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidlval | Structured version Visualization version GIF version |
Description: Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
lidlval | ⊢ (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lidl 21236 | . . 3 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
2 | 1 | fveq1i 6920 | . 2 ⊢ (LIdeal‘𝑊) = ((LSubSp ∘ ringLMod)‘𝑊) |
3 | 00lss 20957 | . . 3 ⊢ ∅ = (LSubSp‘∅) | |
4 | rlmfn 21215 | . . . 4 ⊢ ringLMod Fn V | |
5 | fnfun 6678 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
7 | 3, 6 | fvco4i 7021 | . 2 ⊢ ((LSubSp ∘ ringLMod)‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
8 | 2, 7 | eqtri 2762 | 1 ⊢ (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3482 ∘ ccom 5703 Fun wfun 6566 Fn wfn 6567 ‘cfv 6572 LSubSpclss 20947 ringLModcrglmod 21189 LIdealclidl 21234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-1cn 11238 ax-addcl 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-ov 7448 df-om 7900 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-nn 12290 df-slot 17224 df-ndx 17236 df-base 17254 df-lss 20948 df-rgmod 21191 df-lidl 21236 |
This theorem is referenced by: lidlss 21240 islidl 21243 lidl0cl 21248 lidlacl 21249 lidlnegcl 21250 lidl0ALT 21256 lidl1ALT 21259 lidlacs 21262 rspcl 21263 rspssp 21267 mrcrsp 21269 lidlrsppropd 21272 lsmidllsp 33385 lsmidl 33386 islnr2 43011 |
Copyright terms: Public domain | W3C validator |