| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidlval | Structured version Visualization version GIF version | ||
| Description: Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| lidlval | ⊢ (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lidl 21138 | . . 3 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
| 2 | 1 | fveq1i 6818 | . 2 ⊢ (LIdeal‘𝑊) = ((LSubSp ∘ ringLMod)‘𝑊) |
| 3 | 00lss 20867 | . . 3 ⊢ ∅ = (LSubSp‘∅) | |
| 4 | rlmfn 21117 | . . . 4 ⊢ ringLMod Fn V | |
| 5 | fnfun 6577 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
| 7 | 3, 6 | fvco4i 6918 | . 2 ⊢ ((LSubSp ∘ ringLMod)‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
| 8 | 2, 7 | eqtri 2753 | 1 ⊢ (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3434 ∘ ccom 5618 Fun wfun 6471 Fn wfn 6472 ‘cfv 6477 LSubSpclss 20857 ringLModcrglmod 21099 LIdealclidl 21136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-1cn 11056 ax-addcl 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12118 df-slot 17085 df-ndx 17097 df-base 17113 df-lss 20858 df-rgmod 21101 df-lidl 21138 |
| This theorem is referenced by: lidlss 21142 islidl 21145 lidl0cl 21150 lidlacl 21151 lidlnegcl 21152 lidl0ALT 21158 lidl1ALT 21161 lidlacs 21164 rspcl 21165 rspssp 21169 mrcrsp 21171 lidlrsppropd 21174 lsmidllsp 33355 lsmidl 33356 islnr2 43126 |
| Copyright terms: Public domain | W3C validator |