Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lidlval | Structured version Visualization version GIF version |
Description: Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
lidlval | ⊢ (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lidl 20516 | . . 3 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
2 | 1 | fveq1i 6812 | . 2 ⊢ (LIdeal‘𝑊) = ((LSubSp ∘ ringLMod)‘𝑊) |
3 | 00lss 20283 | . . 3 ⊢ ∅ = (LSubSp‘∅) | |
4 | rlmfn 20540 | . . . 4 ⊢ ringLMod Fn V | |
5 | fnfun 6571 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
7 | 3, 6 | fvco4i 6908 | . 2 ⊢ ((LSubSp ∘ ringLMod)‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
8 | 2, 7 | eqtri 2764 | 1 ⊢ (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Vcvv 3440 ∘ ccom 5611 Fun wfun 6459 Fn wfn 6460 ‘cfv 6465 LSubSpclss 20273 ringLModcrglmod 20511 LIdealclidl 20512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-1cn 11008 ax-addcl 11010 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-nn 12053 df-slot 16957 df-ndx 16969 df-base 16987 df-lss 20274 df-rgmod 20515 df-lidl 20516 |
This theorem is referenced by: lidlss 20561 islidl 20562 lidl0cl 20563 lidlacl 20564 lidlnegcl 20565 lidlmcl 20568 lidl0 20570 lidl1 20571 lidlacs 20572 rspcl 20573 rspssp 20577 mrcrsp 20578 lidlrsppropd 20581 lsmidllsp 31723 lsmidl 31724 islnr2 41161 |
Copyright terms: Public domain | W3C validator |