| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspval | Structured version Visualization version GIF version | ||
| Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| rspval | ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rsp 21181 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
| 2 | 1 | fveq1i 6887 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) |
| 3 | 00lsp 20947 | . . 3 ⊢ ∅ = (LSpan‘∅) | |
| 4 | rlmfn 21159 | . . . 4 ⊢ ringLMod Fn V | |
| 5 | fnfun 6648 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
| 7 | 3, 6 | fvco4i 6990 | . 2 ⊢ ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| 8 | 2, 7 | eqtri 2757 | 1 ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3463 ∘ ccom 5669 Fun wfun 6535 Fn wfn 6536 ‘cfv 6541 LSpanclspn 20937 ringLModcrglmod 21139 RSpancrsp 21179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-addcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12249 df-slot 17201 df-ndx 17213 df-base 17230 df-lss 20898 df-lsp 20938 df-rgmod 21141 df-rsp 21181 |
| This theorem is referenced by: rspcl 21207 rspssid 21208 rsp0 21210 rspssp 21211 elrspsn 21212 mrcrsp 21213 lidlrsppropd 21216 rspsn 21305 elrsp 33335 lsmidllsp 33363 lsmidl 33364 mxidlprm 33433 idlsrgmulrss1 33474 idlsrgmulrss2 33475 rlmdim 33595 rgmoddimOLD 33596 islnr2 43089 |
| Copyright terms: Public domain | W3C validator |