![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspval | Structured version Visualization version GIF version |
Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
rspval | ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rsp 19576 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
2 | 1 | fveq1i 6449 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) |
3 | 00lsp 19380 | . . 3 ⊢ ∅ = (LSpan‘∅) | |
4 | rlmfn 19591 | . . . 4 ⊢ ringLMod Fn V | |
5 | fnfun 6235 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
7 | 3, 6 | fvco4i 6538 | . 2 ⊢ ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
8 | 2, 7 | eqtri 2802 | 1 ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 Vcvv 3398 ∘ ccom 5361 Fun wfun 6131 Fn wfn 6132 ‘cfv 6137 LSpanclspn 19370 ringLModcrglmod 19570 RSpancrsp 19572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-slot 16263 df-base 16265 df-lss 19329 df-lsp 19371 df-rgmod 19574 df-rsp 19576 |
This theorem is referenced by: rspcl 19623 rspssid 19624 rsp0 19626 rspssp 19627 mrcrsp 19628 lidlrsppropd 19631 rspsn 19655 islnr2 38653 |
Copyright terms: Public domain | W3C validator |