MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspval Structured version   Visualization version   GIF version

Theorem rspval 21177
Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
rspval (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))

Proof of Theorem rspval
StepHypRef Expression
1 df-rsp 21175 . . 3 RSpan = (LSpan ∘ ringLMod)
21fveq1i 6882 . 2 (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊)
3 00lsp 20943 . . 3 ∅ = (LSpan‘∅)
4 rlmfn 21153 . . . 4 ringLMod Fn V
5 fnfun 6643 . . . 4 (ringLMod Fn V → Fun ringLMod)
64, 5ax-mp 5 . . 3 Fun ringLMod
73, 6fvco4i 6985 . 2 ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊))
82, 7eqtri 2759 1 (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3464  ccom 5663  Fun wfun 6530   Fn wfn 6531  cfv 6536  LSpanclspn 20933  ringLModcrglmod 21135  RSpancrsp 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-slot 17206  df-ndx 17218  df-base 17234  df-lss 20894  df-lsp 20934  df-rgmod 21137  df-rsp 21175
This theorem is referenced by:  rspcl  21201  rspssid  21202  rsp0  21204  rspssp  21205  elrspsn  21206  mrcrsp  21207  lidlrsppropd  21210  rspsn  21299  elrsp  33392  lsmidllsp  33420  lsmidl  33421  mxidlprm  33490  idlsrgmulrss1  33531  idlsrgmulrss2  33532  rlmdim  33654  rgmoddimOLD  33655  islnr2  43105
  Copyright terms: Public domain W3C validator