|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rspval | Structured version Visualization version GIF version | ||
| Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| rspval | ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rsp 21220 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
| 2 | 1 | fveq1i 6906 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) | 
| 3 | 00lsp 20980 | . . 3 ⊢ ∅ = (LSpan‘∅) | |
| 4 | rlmfn 21198 | . . . 4 ⊢ ringLMod Fn V | |
| 5 | fnfun 6667 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod | 
| 7 | 3, 6 | fvco4i 7009 | . 2 ⊢ ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊)) | 
| 8 | 2, 7 | eqtri 2764 | 1 ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 Vcvv 3479 ∘ ccom 5688 Fun wfun 6554 Fn wfn 6555 ‘cfv 6560 LSpanclspn 20970 ringLModcrglmod 21172 RSpancrsp 21218 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-1cn 11214 ax-addcl 11216 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-nn 12268 df-slot 17220 df-ndx 17232 df-base 17249 df-lss 20931 df-lsp 20971 df-rgmod 21174 df-rsp 21220 | 
| This theorem is referenced by: rspcl 21246 rspssid 21247 rsp0 21249 rspssp 21250 elrspsn 21251 mrcrsp 21252 lidlrsppropd 21255 rspsn 21344 elrsp 33401 lsmidllsp 33429 lsmidl 33430 mxidlprm 33499 idlsrgmulrss1 33540 idlsrgmulrss2 33541 rlmdim 33661 rgmoddimOLD 33662 islnr2 43131 | 
| Copyright terms: Public domain | W3C validator |