Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspval | Structured version Visualization version GIF version |
Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
rspval | ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rsp 20448 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
2 | 1 | fveq1i 6772 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) |
3 | 00lsp 20254 | . . 3 ⊢ ∅ = (LSpan‘∅) | |
4 | rlmfn 20471 | . . . 4 ⊢ ringLMod Fn V | |
5 | fnfun 6531 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
7 | 3, 6 | fvco4i 6866 | . 2 ⊢ ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
8 | 2, 7 | eqtri 2768 | 1 ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Vcvv 3431 ∘ ccom 5594 Fun wfun 6426 Fn wfn 6427 ‘cfv 6432 LSpanclspn 20244 ringLModcrglmod 20442 RSpancrsp 20444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-1cn 10940 ax-addcl 10942 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-om 7708 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-nn 11985 df-slot 16894 df-ndx 16906 df-base 16924 df-lss 20205 df-lsp 20245 df-rgmod 20446 df-rsp 20448 |
This theorem is referenced by: rspcl 20504 rspssid 20505 rsp0 20507 rspssp 20508 mrcrsp 20509 lidlrsppropd 20512 rspsn 20536 rspsnel 31576 elrsp 31578 lsmidllsp 31597 lsmidl 31598 mxidlprm 31649 idlsrgmulrss1 31665 idlsrgmulrss2 31666 rgmoddim 31702 islnr2 40948 |
Copyright terms: Public domain | W3C validator |