Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspval | Structured version Visualization version GIF version |
Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
rspval | ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rsp 20437 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
2 | 1 | fveq1i 6775 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) |
3 | 00lsp 20243 | . . 3 ⊢ ∅ = (LSpan‘∅) | |
4 | rlmfn 20460 | . . . 4 ⊢ ringLMod Fn V | |
5 | fnfun 6533 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
7 | 3, 6 | fvco4i 6869 | . 2 ⊢ ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
8 | 2, 7 | eqtri 2766 | 1 ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∘ ccom 5593 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 LSpanclspn 20233 ringLModcrglmod 20431 RSpancrsp 20433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 df-base 16913 df-lss 20194 df-lsp 20234 df-rgmod 20435 df-rsp 20437 |
This theorem is referenced by: rspcl 20493 rspssid 20494 rsp0 20496 rspssp 20497 mrcrsp 20498 lidlrsppropd 20501 rspsn 20525 rspsnel 31567 elrsp 31569 lsmidllsp 31588 lsmidl 31589 mxidlprm 31640 idlsrgmulrss1 31656 idlsrgmulrss2 31657 rgmoddim 31693 islnr2 40939 |
Copyright terms: Public domain | W3C validator |