| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspval | Structured version Visualization version GIF version | ||
| Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| rspval | ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rsp 21144 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) |
| 3 | 00lsp 20912 | . . 3 ⊢ ∅ = (LSpan‘∅) | |
| 4 | rlmfn 21122 | . . . 4 ⊢ ringLMod Fn V | |
| 5 | fnfun 6581 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
| 7 | 3, 6 | fvco4i 6923 | . 2 ⊢ ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| 8 | 2, 7 | eqtri 2754 | 1 ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∘ ccom 5620 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 LSpanclspn 20902 ringLModcrglmod 21104 RSpancrsp 21142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 df-lss 20863 df-lsp 20903 df-rgmod 21106 df-rsp 21144 |
| This theorem is referenced by: rspcl 21170 rspssid 21171 rsp0 21173 rspssp 21174 elrspsn 21175 mrcrsp 21176 lidlrsppropd 21179 rspsn 21268 elrsp 33332 lsmidllsp 33360 lsmidl 33361 mxidlprm 33430 idlsrgmulrss1 33471 idlsrgmulrss2 33472 rlmdim 33617 rgmoddimOLD 33618 islnr2 43146 |
| Copyright terms: Public domain | W3C validator |