| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspval | Structured version Visualization version GIF version | ||
| Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| rspval | ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rsp 21148 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
| 2 | 1 | fveq1i 6829 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) |
| 3 | 00lsp 20916 | . . 3 ⊢ ∅ = (LSpan‘∅) | |
| 4 | rlmfn 21126 | . . . 4 ⊢ ringLMod Fn V | |
| 5 | fnfun 6586 | . . . 4 ⊢ (ringLMod Fn V → Fun ringLMod) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ Fun ringLMod |
| 7 | 3, 6 | fvco4i 6929 | . 2 ⊢ ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| 8 | 2, 7 | eqtri 2756 | 1 ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3437 ∘ ccom 5623 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 LSpanclspn 20906 ringLModcrglmod 21108 RSpancrsp 21146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-slot 17095 df-ndx 17107 df-base 17123 df-lss 20867 df-lsp 20907 df-rgmod 21110 df-rsp 21148 |
| This theorem is referenced by: rspcl 21174 rspssid 21175 rsp0 21177 rspssp 21178 elrspsn 21179 mrcrsp 21180 lidlrsppropd 21183 rspsn 21272 elrsp 33344 lsmidllsp 33372 lsmidl 33373 mxidlprm 33442 idlsrgmulrss1 33483 idlsrgmulrss2 33484 rlmdim 33643 rgmoddimOLD 33644 islnr2 43232 |
| Copyright terms: Public domain | W3C validator |