|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fconst2g | Structured version Visualization version GIF version | ||
| Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.) | 
| Ref | Expression | 
|---|---|
| fconst2g | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvconst 7184 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 2 | 1 | adantlr 715 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | 
| 3 | fvconst2g 7222 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) | |
| 4 | 3 | adantll 714 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) | 
| 5 | 2, 4 | eqtr4d 2780 | . . . . 5 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) | 
| 6 | 5 | ralrimiva 3146 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) | 
| 7 | ffn 6736 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴) | |
| 8 | fnconstg 6796 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 9 | eqfnfv 7051 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) | |
| 10 | 7, 8, 9 | syl2an 596 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) | 
| 11 | 6, 10 | mpbird 257 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → 𝐹 = (𝐴 × {𝐵})) | 
| 12 | 11 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵}))) | 
| 13 | fconstg 6795 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 14 | feq1 6716 | . . 3 ⊢ (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
| 15 | 13, 14 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵})) | 
| 16 | 12, 15 | impbid 212 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {csn 4626 × cxp 5683 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 | 
| This theorem is referenced by: fconst2 7225 fconst5 7226 snmapen 9078 repsdf2 14816 cnconst 23292 padct 32731 prv1n 35436 fconst7 45271 eufsnlem 48750 mofsn 48753 mofeu 48757 | 
| Copyright terms: Public domain | W3C validator |