MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst2g Structured version   Visualization version   GIF version

Theorem fconst2g 7240
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst2g (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))

Proof of Theorem fconst2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvconst 7198 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
21adantlr 714 . . . . . 6 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
3 fvconst2g 7239 . . . . . . 7 ((𝐵𝐶𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
43adantll 713 . . . . . 6 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
52, 4eqtr4d 2783 . . . . 5 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥))
65ralrimiva 3152 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥))
7 ffn 6747 . . . . 5 (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴)
8 fnconstg 6809 . . . . 5 (𝐵𝐶 → (𝐴 × {𝐵}) Fn 𝐴)
9 eqfnfv 7064 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥)))
107, 8, 9syl2an 595 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥)))
116, 10mpbird 257 . . 3 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → 𝐹 = (𝐴 × {𝐵}))
1211expcom 413 . 2 (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵})))
13 fconstg 6808 . . 3 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
14 feq1 6728 . . 3 (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
1513, 14syl5ibrcom 247 . 2 (𝐵𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵}))
1612, 15impbid 212 1 (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {csn 4648   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  fconst2  7242  fconst5  7243  snmapen  9103  repsdf2  14826  cnconst  23313  padct  32733  prv1n  35399  fconst7  45174  eufsnlem  48554  mofsn  48557  mofeu  48561
  Copyright terms: Public domain W3C validator