![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst2g | Structured version Visualization version GIF version |
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.) |
Ref | Expression |
---|---|
fconst2g | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconst 7177 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
2 | 1 | adantlr 713 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
3 | fvconst2g 7218 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) | |
4 | 3 | adantll 712 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) |
5 | 2, 4 | eqtr4d 2768 | . . . . 5 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) |
6 | 5 | ralrimiva 3135 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) |
7 | ffn 6727 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴) | |
8 | fnconstg 6789 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) Fn 𝐴) | |
9 | eqfnfv 7043 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) | |
10 | 7, 8, 9 | syl2an 594 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) |
11 | 6, 10 | mpbird 256 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → 𝐹 = (𝐴 × {𝐵})) |
12 | 11 | expcom 412 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵}))) |
13 | fconstg 6788 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
14 | feq1 6708 | . . 3 ⊢ (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
15 | 13, 14 | syl5ibrcom 246 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵})) |
16 | 12, 15 | impbid 211 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 {csn 4632 × cxp 5679 Fn wfn 6548 ⟶wf 6549 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 |
This theorem is referenced by: fconst2 7221 fconst5 7222 snmapen 9073 repsdf2 14781 cnconst 23271 padct 32624 prv1n 35211 fconst7 44811 eufsnlem 48145 mofsn 48148 mofeu 48152 |
Copyright terms: Public domain | W3C validator |