MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst2g Structured version   Visualization version   GIF version

Theorem fconst2g 7223
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst2g (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))

Proof of Theorem fconst2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvconst 7184 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
21adantlr 715 . . . . . 6 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
3 fvconst2g 7222 . . . . . . 7 ((𝐵𝐶𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
43adantll 714 . . . . . 6 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
52, 4eqtr4d 2780 . . . . 5 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥))
65ralrimiva 3146 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥))
7 ffn 6736 . . . . 5 (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴)
8 fnconstg 6796 . . . . 5 (𝐵𝐶 → (𝐴 × {𝐵}) Fn 𝐴)
9 eqfnfv 7051 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥)))
107, 8, 9syl2an 596 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥)))
116, 10mpbird 257 . . 3 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → 𝐹 = (𝐴 × {𝐵}))
1211expcom 413 . 2 (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵})))
13 fconstg 6795 . . 3 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
14 feq1 6716 . . 3 (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
1513, 14syl5ibrcom 247 . 2 (𝐵𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵}))
1612, 15impbid 212 1 (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  {csn 4626   × cxp 5683   Fn wfn 6556  wf 6557  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569
This theorem is referenced by:  fconst2  7225  fconst5  7226  snmapen  9078  repsdf2  14816  cnconst  23292  padct  32731  prv1n  35436  fconst7  45271  eufsnlem  48750  mofsn  48753  mofeu  48757
  Copyright terms: Public domain W3C validator