| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst2g | Structured version Visualization version GIF version | ||
| Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.) |
| Ref | Expression |
|---|---|
| fconst2g | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst 7091 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 2 | 1 | adantlr 715 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| 3 | fvconst2g 7131 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) | |
| 4 | 3 | adantll 714 | . . . . . 6 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) |
| 5 | 2, 4 | eqtr4d 2768 | . . . . 5 ⊢ (((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) |
| 6 | 5 | ralrimiva 3122 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥)) |
| 7 | ffn 6647 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴) | |
| 8 | fnconstg 6707 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 9 | eqfnfv 6959 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) | |
| 10 | 7, 8, 9 | syl2an 596 | . . . 4 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = ((𝐴 × {𝐵})‘𝑥))) |
| 11 | 6, 10 | mpbird 257 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐵 ∈ 𝐶) → 𝐹 = (𝐴 × {𝐵})) |
| 12 | 11 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵}))) |
| 13 | fconstg 6706 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 14 | feq1 6625 | . . 3 ⊢ (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
| 15 | 13, 14 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵})) |
| 16 | 12, 15 | impbid 212 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 {csn 4574 × cxp 5612 Fn wfn 6472 ⟶wf 6473 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 |
| This theorem is referenced by: fconst2 7134 fconst5 7135 snmapen 8955 repsdf2 14677 cnconst 23192 fconst7v 32593 padct 32691 prv1n 35443 fconst7 45280 eufsnlem 48851 mofsn 48854 mofeu 48858 |
| Copyright terms: Public domain | W3C validator |