MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvdiagfn Structured version   Visualization version   GIF version

Theorem fvdiagfn 8881
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fvdiagfn ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑊   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fvdiagfn
StepHypRef Expression
1 fdiagfn.f . 2 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
2 sneq 4637 . . 3 (𝑥 = 𝑋 → {𝑥} = {𝑋})
32xpeq2d 5705 . 2 (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋}))
4 simpr 485 . 2 ((𝐼𝑊𝑋𝐵) → 𝑋𝐵)
5 snex 5430 . . . 4 {𝑋} ∈ V
6 xpexg 7733 . . . 4 ((𝐼𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V)
75, 6mpan2 689 . . 3 (𝐼𝑊 → (𝐼 × {𝑋}) ∈ V)
87adantr 481 . 2 ((𝐼𝑊𝑋𝐵) → (𝐼 × {𝑋}) ∈ V)
91, 3, 4, 8fvmptd3 7018 1 ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4627  cmpt 5230   × cxp 5673  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548
This theorem is referenced by:  pwsdiagmhm  18708  pwsdiaglmhm  20660
  Copyright terms: Public domain W3C validator