![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvdiagfn | Structured version Visualization version GIF version |
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
fvdiagfn | ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdiagfn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
2 | sneq 4637 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
3 | 2 | xpeq2d 5705 | . 2 ⊢ (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋})) |
4 | simpr 485 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | snex 5430 | . . . 4 ⊢ {𝑋} ∈ V | |
6 | xpexg 7733 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V) | |
7 | 5, 6 | mpan2 689 | . . 3 ⊢ (𝐼 ∈ 𝑊 → (𝐼 × {𝑋}) ∈ V) |
8 | 7 | adantr 481 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐼 × {𝑋}) ∈ V) |
9 | 1, 3, 4, 8 | fvmptd3 7018 | 1 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 ↦ cmpt 5230 × cxp 5673 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 |
This theorem is referenced by: pwsdiagmhm 18708 pwsdiaglmhm 20660 |
Copyright terms: Public domain | W3C validator |