MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvdiagfn Structured version   Visualization version   GIF version

Theorem fvdiagfn 8910
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fvdiagfn ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑊   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fvdiagfn
StepHypRef Expression
1 fdiagfn.f . 2 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
2 sneq 4640 . . 3 (𝑥 = 𝑋 → {𝑥} = {𝑋})
32xpeq2d 5708 . 2 (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋}))
4 simpr 483 . 2 ((𝐼𝑊𝑋𝐵) → 𝑋𝐵)
5 snex 5433 . . . 4 {𝑋} ∈ V
6 xpexg 7753 . . . 4 ((𝐼𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V)
75, 6mpan2 689 . . 3 (𝐼𝑊 → (𝐼 × {𝑋}) ∈ V)
87adantr 479 . 2 ((𝐼𝑊𝑋𝐵) → (𝐼 × {𝑋}) ∈ V)
91, 3, 4, 8fvmptd3 7027 1 ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  {csn 4630  cmpt 5232   × cxp 5676  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557
This theorem is referenced by:  pwsdiagmhm  18791  pwsdiaglmhm  20954
  Copyright terms: Public domain W3C validator