Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvdiagfn | Structured version Visualization version GIF version |
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
fvdiagfn | ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdiagfn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
2 | sneq 4568 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
3 | 2 | xpeq2d 5610 | . 2 ⊢ (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋})) |
4 | simpr 484 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | snex 5349 | . . . 4 ⊢ {𝑋} ∈ V | |
6 | xpexg 7578 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V) | |
7 | 5, 6 | mpan2 687 | . . 3 ⊢ (𝐼 ∈ 𝑊 → (𝐼 × {𝑋}) ∈ V) |
8 | 7 | adantr 480 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐼 × {𝑋}) ∈ V) |
9 | 1, 3, 4, 8 | fvmptd3 6880 | 1 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: pwsdiagmhm 18384 pwsdiaglmhm 20234 |
Copyright terms: Public domain | W3C validator |